Energy News  
TECH SPACE
University of Toronto chemists advance ability to control chemical reactions
by Staff Writers
Toronto, Canada (SPX) Oct 09, 2018

The selection of the impact parameter is fundamental to the outcome of chemical reaction, as visualized here based on experiments. At zero impact parameter, the reaction at the top showed reproducibly formation of a bound pair of CF2 molecules at the copper surface. In the second event, at bottom, a collision at slightly higher impact parameter (3.6 Angstroms, rather than zero), the products shown at the right of the picture are always far apart, separately chemically bound to the underlying metal. This too is a chemical reaction but exhibiting a different pattern of reaction with the metal. The impact parameter is seen to determine the reaction pathway. This has not previously been demonstrated, since it was not possible to select the impact parameter.

Scientists at the University of Toronto have found a way to select the outcome of chemical reaction by employing an elusive and long-sought factor known as the 'impact parameter'.

The team of U of T chemists, led by Nobel Prize-winning researcher John Polanyi, have found a means to select the impact parameter or miss-distance by which a reagent molecule misses a target molecule, thereby altering the products of chemical reaction. The findings are publishedin Science Advances.

"Chemists toss molecules at other molecules all the time in hopes of making something new," says Polanyi, University Professor in the Department of Chemistry at U of T. "In this study we have found a way to control the outcome by aiming a projectile molecule at a target molecule, with an accuracy of a small fraction of the diameter of the target molecule."

Molecular dynamics in chemistry is a lot like a game of billiards. Just as a billiard player sends the incoming ball towards the target ball, chemists launch one molecule towards another to produce a chemical reaction. However, this can be done, it is now clear, either by chance as has been the norm, or by design as the new work shows to be possible.

Previously the inherent randomness in molecular motions has prevented chemists from aiming their projectile molecules at the chemical targets, as billiards players do. Instead, they have been obliged to play their game of billiards blindfold.

"Over the years chemists have become very good at playing billiards blindfold, using sticky balls and throwing them strongly or weakly," Polanyi says. "But we have found a way to take off the blindfold, and aim each shot."

The researchers achieved this by depositing molecules on a metal crystal, then applying a small current from an atomically sharp metal tip to one of the molecules. This addition of energy caused a 'projectile' molecule to shoot across the surface in a straight line, along one of the rail-like ridges on the metal crystal toward a nearby 'target' molecule present on the crystal, missing it by a controlled amount.

Different miss-distances, called 'impact parameters', were shown reproducibly to give different outcomes, that is to say different patterns of reaction.

"The underlying crystalline surface is our billiard table," said Kelvin Anggara, a postdoctoral fellow in Polanyi's research group and a lead author of the study.

"By taking advantage of the grooves that nature has conveniently scored across the surface of crystals, we found we could guide the travelling molecular projectile so that it hit the target either head-on or in a glancing collision that missed the target by a desired amount. That way, just as in billiards, we can control the outcome of the molecular collision."

Selecting the miss-distance or impact parameter in collisions between reagent molecules has till now been termed the "forbidden fruit of reaction dynamics" by Harvard University professor Dudley R. Herschbach, with whom Polanyi shared the 1986 Nobel Prize in Chemistry along with Yuan T. Lee. While the discoveries made by the trio enabled chemists to infer many of the forces at play in a chemical reaction, the impact parameter has defied direct control.

This is true even in the famously well-controlled conditions of "crossed molecular beams". It is frequently overlooked that though the beams in this elegant method are aimed at one another, the molecules are not. Now the individual molecules can be aimed at one another, quite precisely.

"We believe that this is a major step forward in the control of chemical reactions," said Anggara, who performed the study along with Polanyi, senior research associate Lydie Leung and graduate student Matthew Timm.

Research Report: "Approaching the Forbidden Fruit of Reaction Dynamics: Aiming Reagent at Selected Impact Parameters"


Related Links
University of Toronto
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Brazil says Norsk Hydro lacked waste license for stalled plant
Bras�lia (AFP) Oct 4, 2018
Brazilian authorities said Thursday that Norwegian aluminum group Norsk Hydro failed to apply for a license to operate a new waste deposit at its key Alunorte alumina plant, the world's biggest and now suspended as a result. The company on Wednesday announced it had to stop production at the facility, located near the city of Belem in Brazil's northwest. The news sent Norsk Hydro's share price tumbling. The Norwegian group has been under close scrutiny by Brazil. Earlier this year, Brazil ac ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
How will climate change stress the power grid

Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

TECH SPACE
Flowing salt water over this super-hydrophobic surface can generate electricity

A new carbon material with Na storage capacity over 400mAh/g

What powers deep space travel

X-rays uncover a hidden property that leads to failure in a lithium-ion battery material

TECH SPACE
Wind turbines contribute to climate change: study

Wind Lidar company announces new turbine-mounted Lidar and formation of Measurement Services business

Large-scale US wind power would cause warming that would take roughly a century to offset

Large-scale wind power needs more land, causes more climatic impact than previously thought

TECH SPACE
Chernobyl begins new life as solar power park

Solar panel users basked in record energy surge created by summer heatwave

HZB researchers are used to boost the efficiency of silicon solar cells

India-led solar alliance will outshine OPEC: PM Modi

TECH SPACE
At Le Creusot, dimensional inspection of test pieces is going digital

New concept to cool boiling surface may help prevent nuclear power plant accidents

TVO joins FROG as EPR reactor operator

First fuel cladding tubes delivered for "Hualong-1" nuclear power plant

TECH SPACE
A biofuel for automated heat generation

Climate researchers: More green space, less biofuel

How a molecular signal helps plant cells decide when to make oil

Ready-to-use recipe for turning plant waste into gasoline

TECH SPACE
S. Arabia backs down from blocking UN climate report: sources

Quantum mechanics work lets oil industry know promise of recovery experiments

Researchers map susceptibility to man-made earthquakes

Crude oil stays steady with Iranian sanctions just a month away

TECH SPACE
Avoiding climate chaos means 'unprecedented' change: UN report

UN report on global warming target puts governments on the spot

World leaders gather to breathe new life into Paris accord

Tropics are widening as predicted by climate models, research finds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.