Energy News  
TECH SPACE
University launches new materials to the International Space Station
by Staff Writers
Manchester UK (SPX) Nov 22, 2019

As part of the DISCOVERER project, the University is also helping to develop a small satellite, called the Satellite for Orbital Aerodynamics Research (SOAR). Due to be launched in summer 2020, SOAR will further investigate the aerodynamic properties of the materials, by examining the drag and lift of the spacecraft.

Researchers from The University of Manchester have developed new, "aerodynamic" materials, which have been sent to the International Space Station (ISS) for testing.

The materials were carried to the ISS from the Wallops Flight Facility in Virginia, in a science carrier from Alpha Space Test and Research Alliance of Houston, Texas, on-board a Northrop Grumman Cygnus resupply vehicle which launched on 2 November.

Now deployed on the exterior of the ISS, the materials will be exposed to the harsh LEO (Low Earth Orbit) environment, to investigate their erosion properties. After six months, they will be returned to Earth for analysis, where it is hoped they will be used in a new generation of very-low-orbit satellites.

The experiments form part of the DISCOVERER project, a Horizon 2020 project on which the University is the lead partner. DISCOVERER is developing technologies to enable the commercially viable operation of satellites in very low Earth orbits, below an altitude of around 450 km, where drag from the residual atmosphere has a significant impact on spacecraft design.

Dr Peter Roberts, scientific coordinator for DISCOVERER and principal investigator for the University's contribution, commented on the launch; "If the materials have the properties we believe that they do, they have the potential to significantly reduce the drag acting on satellites in very low orbits, opening a new orbital regime for communications and remote sensing satellites."

He added; "Very low Earth orbits have many benefits, improving payload performance whilst also allowing satellites to be smaller and use less power. They also represent a uniquely sustainable environment in low Earth orbit as atmospheric drag rapidly removes space debris and uncontrolled satellites when they reach the end of their operational lives."

As part of the DISCOVERER project, the University is also helping to develop a small satellite, called the Satellite for Orbital Aerodynamics Research (SOAR). Due to be launched in summer 2020, SOAR will further investigate the aerodynamic properties of the materials, by examining the drag and lift of the spacecraft.

In addition, the DISCOVERER project has developed a Rarefied Orbital Aerodynamics Research facility (ROAR). Here, researchers are able to replicate the flow of gases at orbital velocities to determine how the gas scatters from materials.

The ISS deployment was made possible by Alpha Space Test and Research Alliance, which owns and operates the Materials on the International Space Station Experiment (MISSE) facility, under agreements with NASA and the International Space Station National Laboratory (ISSNL).

The DISCOVERER project has received funding from the EU's Horizon 2020 research and innovation programme, under grant agreement No. 737183.


Related Links
DISCOVERER project,
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Army project may lead to new class of high-performance materials
Research Triangle Park NC (SPX) Nov 19, 2019
Synthetic biologists working on a U.S. Army project have developed a process that could lead to a new class of synthetic polymers that may create new high-performance materials and therapeutics for Soldiers. Nature Communications published research conducted by Army-funded researchers at Northwestern University, who developed a set of design rules to guide how ribosomes, a cell structure that makes protein, can incorporate new kinds of monomers, which can be bonded with identical molecules to form ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
How much energy do we really need

Modeling Every Building in America Starts with Chattanooga

EU bank to stop funding fossil fuels in 'landmark decision'

Energy giants face 35% output cut to hit Paris climate goals: watchdog

TECH SPACE
PPPL scientist confirms way to launch current in fusion plasmas

HKU team invents Direct Thermal Charging Cell for converting waste heat to electricity

New material breaks world record turning heat into electricity

Using mountains for long-term energy storage

TECH SPACE
Global winds reverse decades of slowing and pick up speed

Superconducting wind turbine chalks up first test success

Breaking down controls to better control wind energy systems

Mainstream Renewable closes $580M wind and solar financing deal in Chile

TECH SPACE
New hybrid device can both capture and store solar energy

Canadian Solar achieves commercial operation on 53.4 mwp project in Japan

Airborne delivers final XL panels to Airbus for JUICE solar array

NextEra newest solar plant now powering customers in South Carolina

TECH SPACE
Framatome implements new maintenance technique on reactor component underwater

Czechs plan to build new nuclear unit by 2036

France's EDF cuts nuclear output forecast after quake

Deep learning expands study of nuclear waste remediation

TECH SPACE
Researchers design an improved pathway to carbon-neutral plastics

France reverse palm oil tax break after outcry

France's Total faces outcry after winning back palm oil tax break

Scientists create 'artificial leaf' that turns carbon into fuel

TECH SPACE
Pollution from Athabasca oil sands affects weather processes

How everyday products are supercharging landfill gas, and what that means

US aircraft carrier transits Strait of Hormuz

Lincoln Carrier Strike Group finishes scheduled transit into Persian Gulf

TECH SPACE
Climate impacts 'to cost world $7.9 trillion' by 2050

Planned fossil fuel output swamps Paris climate goals

Climate protesters block Geneva's private jet terminal

Drought-hit Zimbabwe to transfer thousands of animals









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.