Energy News
STELLAR CHEMISTRY
Unfinished deepsea observatory spots highest-energy neutrino ever
Unfinished deepsea observatory spots highest-energy neutrino ever
By B�n�dicte Rey
Paris (AFP) Feb 12, 2025

A neutrino with 30 times more energy than any previously seen on Earth was detected by an unfinished observatory at the bottom of the Mediterranean Sea after travelling from beyond this galaxy, scientists said Wednesday.

Neutrinos are the second most abundant particle in the universe. Known as ghost particles, they have no electric charge, almost no mass and effortlessly pass through most matter -- such as our world or bodies -- without anyone noticing.

The most violently explosive events in the universe -- such as a star going supernova, two neutron stars smashing into each other or the almighty suck of supermassive black holes -- create what is called ultra-high-energy neutrinos.

Because these particles interact so little with matter, they glide easily away from the violence that created them, travelling in a straight line across the universe.

When they finally arrive at Earth, neutrinos serve as "special cosmic messengers" offering a glimpse into the far reaches of the cosmos that is otherwise hidden from our view, Italian researcher Rosa Coniglione said in a statement.

However, these ghost particles are extremely difficult to detect. One way is by using water.

When light passes through water, it slows down. This sometimes allows quick-moving particles to overtake light -- while still not going faster than the speed of light.

When this happens, it creates a bluish glow called "Cherenkov light" that can be detected by extraordinarily sensitive sensors.

But to observe this light requires a huge amount of water -- at least one cubic kilometre, the equivalent of 400,000 Olympic swimming pools.

That is why the Cubic Kilometre Neutrino Telescope, or KM3NeT, lies at the bottom of the Mediterranean.

- Think of a ping pong ball -

The European-led facility is still under construction, and spread over two sites. Its ARCA detector, which is interested in astronomy, is nearly 3,500 metres (2.2 miles) underwater off the coast of Sicily.

The neutrino-hunting ORCA detector is in the depths near the French city of Toulon.

Cables hundreds of metres long equipped with photomultipliers -- which amplify miniscule amounts of light -- have been anchored to the seabed nearby. Eventually 200,000 photomultipliers will be arrayed in the abyss.

But the ARCA detector was operating at just a tenth of what will be its eventual power when it spotted something strange on February 13, 2023, according to new research published in the journal Nature.

A muon, which is a heavy electron produced by a neutrino, "crossed the entire detector, inducing signals in more than one-third of the active sensors," according to a statement from KM3NeT, which brings together 350 scientists from institutions in 21 countries.

The neutrino had an estimated energy of 220 petaelectronvolts -- or 220 million billion electron volts.

A neutrino with such a massive amount of energy had never before been observed on Earth.

"It is roughly the energy of a ping pong ball falling from one metre height," Dutch physicist and KM3NeT researcher Aart Heijboer told a press conference.

"But the amazing thing is that all this energy is contained in one single elementary" particle, he added.

For humans to create such a particle would require building the equivalent of a Large Hadron Collider "all around the Earth at the distance of the geostationary satellites", said French physicist Paschal Coyle.

- Blazars as source? -

With this kind of energy, the event that created this neutrino must have been beyond Milky Way.

The exact distance remains unknown, "but what we are quite sure is that it's not coming from our galaxy", said French physicist Damien Dornic.

The astrophysicists have some theories about what could have caused such a neutrino. Among the suspects are 12 blazars -- the incredibly bright cores of galaxies with supermassive black holes.

But more research is needed.

"At the time this event happened, our neutrino alert system was still in development," Heijboer emphasised.

If another neutrino is detected near the end of this year, an alert will be sent in seconds to "all the telescopes around the world so that they can point in that direction" to try to spot the source, he said.

Related Links
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
A new discovery about the source of the vast energy in cosmic rays
New York NY (SPX) Dec 13, 2024
Ultra-high energy cosmic rays, which emerge in extreme astrophysical environments - like the roiling environments near black holes and neutron stars - have far more energy than the energetic particles that emerge from our sun. In fact, the particles that make up these streams of energy have around 10 million times the energy of particles accelerated in the most extreme particle environment on earth, the human-made Large Hadron Collider. Where does all that energy come from? For many years, scienti ... read more

STELLAR CHEMISTRY
Japan sets new 2035 emissions cut goal

COP30 president urges most 'ambitious' emissions targets possible

Climate activists defend 'future generations', appeal lawyer says

DeepSeek breakthrough raises AI energy questions

STELLAR CHEMISTRY
NRL's Mercury Pulsed Power Facility Celebrates 20 Years of Research Excellence

France sets new plasma record in hunt for nuclear fusion

In a first, researchers stabilize a promising new class of high-temperature superconductors at room pressure

Toward sustainable computing: Energy-efficient memory innovation

STELLAR CHEMISTRY
Green energy projects adding to Sami people's climate woes: Amnesty

New Study Enhances Trust in Wind Power Forecasting with Explainable AI

Trump casts chill over US wind energy sector

US falling behind on wind power, think tank warns

STELLAR CHEMISTRY
Machine Learning Enhances Solar Power Forecast Accuracy

The next-generation solar cell is fully recyclable

China to further shrink renewables subsidies in market reform push

HZB sets new efficiency record for CIGS perovskite tandem solar cells

STELLAR CHEMISTRY
India PM Modi ends foreign tour with nuclear deals in pipeline

GE Vernova advances UK SMR development with new supplier agreements

Error shuts down Swiss nuclear power reactor: operator

Kazakhstan inks first deal to supply uranium to Switzerland

STELLAR CHEMISTRY
Why Expanding the Search for Climate-Friendly Microalgae is Essential

Solar-powered reactor extracts CO2 from air to produce sustainable fuel

New Green Phosphonate Chemistry Explored

Turning farm waste into sustainable roads

STELLAR CHEMISTRY
Chinese scientists utilize SDGSAT-1 satellite for offshore oil and gas platform monitoring

Lula pushes mega-oil project as Brazil prepares to host COP30

Did cuts to shipping emissions spur more global warming?

BP executive promises 'reset' after profits fell in 2024

STELLAR CHEMISTRY
Little Scope for Large-Scale Climate Plantations Without Breaching Planetary Boundaries

Corruption threatens climate action, watchdog warns; World may have entered era of 1.5C warming, scientists say

Indonesia backs climate deals after envoy's Paris skepticism

Fighting global warming in nations' self-interest: UN climate chief

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.