![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Washington DC (SPX) Feb 09, 2011 Surprising new research shows that, contrary to conventional belief, remains of chitin-protein complex-structural materials containing protein and polysaccharide-are present in abundance in fossils of arthropods from the Paleozoic era. Previously the oldest molecular signature of chitin-protein complex was discovered in 25 million year old Cenozoic fossils and remnants of structural protein have also been discovered in 80 million-year-old Mesozoic fossils. Carnegie's George Cody and an international team of scientists discovered relicts of protein-chitin complex in fossils of arthropods from the Paleozoic era. Their findings, published online by Geology, could have major implications for our understanding of the organic fossil record. Among other common features, arthropods have exoskeletons, or cuticles. The outer portions of these cuticles are made up of a composite of chitin fibers, which are embedded in a matrix of protein. It is well known that chitin and structural protein are easily degraded by microorganisms and it has long been believed that chitin and structural proteins would not be present in fossils of moderate age, let alone in fossils dating back to the early Paleozoic. Cody and his team studied fossil remains of a 310-million-year-old scorpion cuticle from northern Illinois and a 417-million-year-old eurypterid-an extinct scorpion-like arthropod, possibly related to horseshoe crabs-from Ontario, Canada. Using sophisticated analytical instrument at the Advanced Light Source facility, the research team measured the absorption spectra of low-energy X-rays by carbon, nitrogen, and oxygen in the fossils. These measurements were taken at a resolution on the order of 25 nanometers. The researchers showed that the majority of carbon, nitrogen and oxygen found in these fossils from the Paleozoic era were derived from a protein-chitin complex. Not surprisingly, the protein-chitin material was somewhat degraded, either by chemical processes or partial bacterial degradation. Cody speculates that the vestigial protein-chitin complex may play a critical role in organic fossil preservation by providing a substrate protected from total degradation by a coating waxy substances that protect the arthropods from desiccation.
Share This Article With Planet Earth
Related Links Carnegie Institution Darwin Today At TerraDaily.com
![]() ![]() Grenoble, France (SPX) Feb 09, 2011 A novel X-ray imaging technology is helping scientists better understand how in the course of evolution snakes have lost their legs. The researchers hope the new data will help resolve a heated debate about the origin of snakes: whether they evolved from a terrestrial lizard or from one that lived in the oceans. New, detailed 3-D images reveal that the internal architecture of an ancient s ... read more |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |