Subscribe free to our newsletters via your
. Energy News .




EARLY EARTH
Understanding how mountains and rivers make life possible
by Staff Writers
Stanford CA (SPX) Mar 20, 2014


Stanford assistant professor Kate Maher holds up two different soil types. The soil on the left is young, dark and composed of more chemically reactive minerals. The sample on the right is older and made up of less reactive minerals such as clays. Image courtesy Matthew Rothe.

Favorable conditions for life on Earth are enabled in part by the natural shuttling of carbon dioxide from the planet's atmosphere to its rocky interior and back again. Now Stanford scientists have devised a pair of math equations that better describe how topography, rock compositions and the movement of water through a landscape affects this vital recycling process.

Scientists have long suspected that the so-called the geologic carbon cycle is responsible for Earth's clement and life-friendly conditions because it helps regulate atmospheric concentrations of carbon dioxide, a greenhouse gas that acts to trap the sun's heat. This cycle is also thought to have played an important role in slowly thawing the planet during those rare times in the past when temperatures dipped so low that the globe was plunged into a "snowball-Earth" scenario and glaciers blanketed the equator.

"Our equations suggest that different landscapes have different potentials for regulating the transfer of carbon dioxide," said Kate Maher, an assistant professor of geological and environmental sciences who developed the equations along with her colleague, Environmental Earth System Science Professor Page Chamberlain. The research, which was supported by the National Research Foundation, is described in the March 14 issue of the journal Science.

The geologic carbon cycle begins when volcanoes release carbon dioxide into the atmosphere. Some of the carbon dioxide (CO2) mixes with rainwater and falls back to Earth as carbonic acid. On land, the carbonic acid chemically erodes, or "weathers," silicate rocks exposed at the Earth's surface to produce bicarbonate and release elements such as calcium and magnesium that eventually wash into the ocean.

Over millions of years, these elements are transformed into rocks such as limestone. When plate tectonics push the carbonate-loaded seafloor down into the Earth's mantle, the carbon is released again as CO2, which is vented back into the atmosphere through volcanic eruptions, thereby completing the cycle.

The equations developed by Maher and Chamberlain address the weathering component of the geologic carbon cycle. The amount of weathering that occurs depends on several factors. One is the makeup of the soil: older soils that have already been weathered dissolve more slowly compared to soils made of fresh rock. "As you weather soil and sediment over time, they become less and less chemically reactive," Maher said. "Physical erosion, which is often associated with mountainous regions, replenishes the soil with reactive minerals."

Another consideration is the length of time that water spends flowing through the soil, a variable that scientists call the "fluid travel time." The more time rainwater spends flowing through soils, the more weathering that occurs. The fluid travel time is in turn affected by the topography of the landscape - water tends to flow more slowly across a flat surface than down an incline.

In the real world, these different factors interact in complex ways. They might work together to speed up the weathering process, or they could oppose each other to slow the process down. For example, consider precipitation falling onto a mountain. The corrosive water may flow more quickly through the mountain, thus reducing the fluid travel time. However, the soils in mountainous regions also tend to be younger and thus richer in elements such as calcium and magnesium, and as a result are more reactive and easily weathered.

The competition between the flow of water and the reactivity of the soils limits how much weathering can occur. Maher and Chamberlain argue that these limits are important for maintaining CO2 levels within an acceptable range to maintain temperatures suitable for life.

The equations could improve scientists' understanding of the geologic carbon cycle by integrating the study of the interactions between the geologic and hydrologic factors that affect rock weathering. Prior to this, scientists tended to study the influence of topography and water on chemical weathering separately. "Our work provides a quantitative framework that links together many qualitative observations from modern weathering environments, but also provides new hypotheses regarding how these processes may work together," Maher said.

Maher and Chamberlain are currently using real-world observations of rivers from around the world to modify and improve their equations.

.


Related Links
Stanford University
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
Parental care of the young from 450 million years ago
Leicester, UK (SPX) Mar 19, 2014
A portrait of prehistoric parenthood captured deep in the fossil record has been uncovered by an international team of scientists led by University of Leicester geologist Professor David Siveter. The 'nursery in the sea' has revealed a species new to science - with specimens preserved incubating their eggs together with probable hatched individuals. As a result, the team has named the new ... read more


EARLY EARTH
Move by Norway sovereign wealth fund to invest in renewables could have 'global impact'

Cutting Victorian energy efficiency scheme would hit vulnerable households and jobs

Activated Carbon Processing Facility and Biomass Plant Hit The Auction Block

Dubai donors pledge $11 mn for UN-led 'green' economy push

EARLY EARTH
Battery that 'breathes' could power next-gen electric vehicles

Harnessing everyday motion to power mobile devices

Lockheed Martin and Atlantis Resources: Harnessing the Power of Ocean Tides

US Seals take control of rogue Libya oil ship: Pentagon

EARLY EARTH
A new algorithm improves the efficiency of small wind turbines

Taming hurricanes

Wind farms can tame hurricanes: scientists

Draft report finds no reliable link between wind farms and health effects

EARLY EARTH
Research Partnership With Cutting Edge 24/7 Solar Technology

Next-Gen PV Technologies to Take Center Stage as Solar Expenditures Rebound

Suntech Power Certifies Ecoppia's Innovative Water-Free Solar Array Cleaning Solution

Greenlight Planet Launches Most Affordable Solar Mobile Charging Product In Africa

EARLY EARTH
AREVA and Novinium to Provide Cable Rejuvenation Services to the Nuclear Industry

Shale could be long-term home for problematic nuclear waste

Greenpeace stages audacious protest at France's oldest nuclear plant

UN nuclear watchdog chief says atomic plants never '100%' safe

EARLY EARTH
Renewable chemical ready for biofuels scale-up

Maverick and PPE To Make Small-scale Methane-to-Methanol Plants

Boeing, South African Airways Explore Ways for Farmers to Grow More Sustainable Biofuel Crops

MSU advances algae's viability as a biofuel

EARLY EARTH
Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

EARLY EARTH
UCLA study yields more accurate data on thousands of years of climate change

A 'Back to the Future' Approach to Taking Action on Climate Change

Number of Days Without Rain to Dramatically Increase in Some World Regions

Climatologists offer explanation for widening of Earth's tropical belt




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.