Energy News
STELLAR CHEMISTRY
Ultrasmall optical devices rewrite the rules of light manipulation
illustration only
Ultrasmall optical devices rewrite the rules of light manipulation
by Elizabeth A. Thomson | Materials Research Laboratory
Boston MA (SPX) Aug 05, 2025

In the push to shrink and enhance technologies that control light, MIT researchers have unveiled a new platform that pushes the limits of modern optics through nanophotonics, the manipulation of light on the nanoscale, or billionths of a meter.

The result is a class of ultracompact optical devices that are not only smaller and more efficient than existing technologies, but also dynamically tunable, or switchable, from one optical mode to another. Until now, this has been an elusive combination in nanophotonics.

"This work marks a significant step toward a future in which nanophotonic devices are not only compact and efficient, but also reprogrammable and adaptive, capable of dynamically responding to external inputs. The marriage of emerging quantum materials and established nanophotonics architectures will surely bring advances to both fields," says Riccardo Comin, MIT's Class of 1947 Career Development Associate Professor of Physics and leader of the work. Comin is also affiliated with MIT's Materials Research Laboratory and Research Laboratory of Electronics (RLE).

Comin's colleagues on the work are Ahmet Kemal Demir, an MIT graduate student in physics; Luca Nessi, a former MIT postdoc who is now a postdoc at Politecnico di Milano; Sachin Vaidya, a postdoc in RLE; Connor A. Occhialini PhD '24, who is now a postdoc at Columbia University; and Marin Soljacic, the Cecil and Ida Green Professor of Physics at MIT.

Demir and Nessi are co-first authors of the Nature Photonics paper.

Toward new nanophotonic materials

Nanophotonics has traditionally relied on materials like silicon, silicon nitride, or titanium dioxide. These are the building blocks of devices that guide and confine light using structures such as waveguides, resonators, and photonic crystals. The latter are periodic arrangements of materials that control how light propagates, much like how a semiconductor crystal affects electron motion.

While highly effective, these materials are constrained by two major limitations. The first involves their refractive indices. These are a measure of how strongly a material interacts with light; the higher the refractive index, the more the material "grabs" or interacts with the light, bending it more sharply and slowing it down more. The refractive indices of silicon and other traditional nanophotonic materials are often modest, which limits how tightly light can be confined and how small optical devices can be made.

A second major limitation of traditional nanophotonic materials: once a structure is fabricated, its optical behavior is essentially fixed. There is usually no way to significantly reconfigure how it responds to light without physically altering it. "Tunability is essential for many next-gen photonics applications, enabling adaptive imaging, precision sensing, reconfigurable light sources, and trainable optical neural networks," says Vaidya.

Introducing chromium sulfide bromide

These are the longstanding challenges that chromium sulfide bromide (CrSBr) is poised to solve. CrSBr is a layered quantum material with a rare combination of magnetic order and strong optical response. Central to its unique optical properties are excitons: quasiparticles formed when a material absorbs light and an electron is excited, leaving behind a positively charged "hole." The electron and hole remain bound together by electrostatic attraction, forming a sort of neutral particle that can strongly interact with light.

In CrSBr, excitons dominate the optical response and are highly sensitive to magnetic fields, which means they can be manipulated using external controls.

Because of these excitons, CrSBr exhibits an exceptionally large refractive index that allows researchers to sculpt the material to fabricate optical structures like photonic crystals that are up to an order of magnitude thinner than those made from traditional materials. "We can make optical structures as thin as 6 nanometers, or just seven layers of atoms stacked on top of each other," says Demir.

And crucially, by applying a modest magnetic field, the MIT researchers were able to continuously and reversibly switch the optical mode. In other words, they demonstrated the ability to dynamically change how light flows through the nanostructure, all without any moving parts or changes in temperature. "This degree of control is enabled by a giant, magnetically induced shift in the refractive index, far beyond what is typically achievable in established photonic materials," says Demir.

In fact, the interaction between light and excitons in CrSBr is so strong that it leads to the formation of polaritons, hybrid light-matter particles that inherit properties from both components. These polaritons enable new forms of photonic behavior, such as enhanced nonlinearities and new regimes of quantum light transport. And unlike conventional systems that require external optical cavities to reach this regime, CrSBr supports polaritons intrinsically.

While this demonstration uses standalone CrSBr flakes, the material can also be integrated into existing photonic platforms, such as integrated photonic circuits. This makes CrSBr immediately relevant to real-world applications, where it can serve as a tunable layer or component in otherwise passive devices.

The MIT results were achieved at very cold temperatures of up to 132 kelvins (-222 degrees Fahrenheit). Although this is below room temperature, there are compelling use cases, such as quantum simulation, nonlinear optics, and reconfigurable polaritonic platforms, where the unparalleled tunability of CrSBr could justify operation in cryogenic environments.

In other words, says Demir, "CrSBr is so unique with respect to other common materials that even going down to cryogenic temperatures will be worth the trouble, hopefully."

That said, the team is also exploring related materials with higher magnetic ordering temperatures to enable similar functionality at more accessible conditions.

This work was supported by the U.S. Department of Energy, the U.S. Army Research Office, and a MathWorks Science Fellowship. The work was performed in part at MIT.nano.

Research Report:"Tunable nanophotonic devices and cavities based on a two-dimensional magnet"

Related Links
Materials Research Laboratory
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Famous double-slit experiment holds up when stripped to its quantum essentials
Boston MA (SPX) Jul 30, 2025
The experiment in question is the double-slit experiment, which was first performed in 1801 by the British scholar Thomas Young to show how light behaves as a wave. Today, with the formulation of quantum mechanics, the double-slit experiment is now known for its surprisingly simple demonstration of a head-scratching reality: that light exists as both a particle and a wave. Stranger still, this duality cannot be simultaneously observed. Seeing light in the form of particles instantly obscures its wave-li ... read more

STELLAR CHEMISTRY
Iran orders office closures as heatwave strains power grid

UN climate chief challenges Australia to curb emissions

China hails 'positive' ICJ ruling on climate reparations

Major economies welcome 'milestone' ICJ climate ruling

STELLAR CHEMISTRY
New transmitter could make wireless devices more energy-efficient

Battery sharing model boosts savings for local energy communities

US to impose steep anti-dumping duty on battery material from China

China tightens export curbs on some battery technologies

STELLAR CHEMISTRY
'Let's go fly a kite': Capturing wind for clean energy in Ireland

Drone swarm explores turbulent airflows near wind turbines

Dogs on the trail of South Africa's endangered tortoises

UK ditches mega green energy supply project from Morocco

STELLAR CHEMISTRY
Solar tracking panels support high quality rice yields in Japan agrivoltaics trial

Mapping the regions where solar energy cuts carbon emissions most effectively

Increasing solar energy use offers key opportunity to reduce US carbon emissions

GOP senators put hold on Treasury nominees over solar, wind credits

STELLAR CHEMISTRY
Russia wants to mine Niger's uranium, energy minister says

Three drones detected in Japan nuclear plant

Atomic Brussels? Support for nuclear power gains ground in EU

Oak Ridge and Atomic Canyon partner to boost nuclear licensing through AI tools

STELLAR CHEMISTRY
Italy fines oil giant Eni over bioplastic market abuse

Acid vapor boosts durability of carbon dioxide-to-fuel devices

Turning CO2 into Sustainable Fuels Could Revolutionize Clean Energy

Cool science: Researchers craft tiny biological tools using frozen ethanol

STELLAR CHEMISTRY
New Zealand reverses ban on offshore oil and gas exploration

Shell net profit retreats on lower energy prices

Top court takes aim at fossil fuels in sweeping ruling

US Treasury chief says China talks could cover Iran, Russia oil buys

STELLAR CHEMISTRY
US pushes to revoke scientific ruling that underpins climate regulations

World court climate ruling: non-binding but game changing

Hundreds protest over water shortages in drought-hit Iraq

Trump administration expected to say greenhouse gases aren't harmful

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.