Energy News  
Tropical Cloud 'Dust' Could Hold The Key To Climate Change

Data will be collected by two planes carrying high-tech monitoring equipment at different altitudes through a series of storms over a four month period. The data will then be used to create computer models of the clouds and the chemicals contained within them.

Manchester, UK (SPX) Oct 28, 2005
Scientists at the University of Manchester will set off for Australia this week to undertake an in-depth study of tropical clouds and the particles sucked up into them to gain further insight into climate change and the depletion of the ozone layer.

The research will take place in Darwin, Australia as part of a major international field experiment to study transport by tropical thunderstorms and the type of high-altitude clouds they produce.

Manchester's research will focus on the analysis of tiny particles, known as aerosols, which determine cloud properties. Aerosols include materials like desert dust, sea salt and other organic materials which are drawn up into the clouds from the earth's surface. These particles control the physics of the clouds and can have a dramatic effect on the climate.

The aim of the experiment is to gain a better understanding of the kind of aerosol particles and gases which are injected by the storms into the Tropical Tropopause Layer, a poorly-understood region of the atmosphere sandwiched between the main tropical weather systems and the stratosphere above.

Data will be collected by two planes carrying high-tech monitoring equipment at different altitudes through a series of storms over a four month period. The data will then be used to create computer models of the clouds and the chemicals contained within them.

Professor Geraint Vaughan, of the University's School of Earth, Atmospheric and Environmental Sciences, who will lead the study, said: "The tropics drives global atmospheric circulation, so it is extremely important for us to understand how atmospheric processes operate there.

"Deep thunderstorms are a major feature of tropical weather, but their overall effect on the transport of material to high levels is poorly understood. This is important because it helps determine the composition of the stratosphere and the kinds of clouds which form high in the atmosphere."

He added: "If we can understand the nature and composition of these clouds, we will be able to use this information to help predict future climate change."

The research is being undertaken as part of the Natural Environment Research Council's (NERC) �1 million ACTIVE project. The research team will use the Australian Egrett aircraft and the NERC's Dornier aircraft to measure chemical and aerosol which are drawn into and expelled from tropical storms. The measurements will be interpreted using cloud-scale and large-scale modelling to distinguish the contribution of different sources to the Tropical Tropopause Layer.

Geraint Vaughan is a Professor of Atmospheric Science within the University of Manchester's School of Earth, Atmospheric and Environmental Sciences, which is part of the Faculty of Engineering and Physical Sciences. The ACTIVE project builds on research carried out in 2002 as part of the EMERARLD-2 campaign, which sought to measure cirrus outflow from topical convection.

Community
Email This Article
Comment On This Article

Related Links
NERC's Airborne Research and Survey Facility
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Climate Science News - Modeling, Mitigation Adaptation



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The Forgotten Methane Source
Heidelberg, Germany (SPX) Jan 11, 2006
In the last few years, more and more research has focused on the biosphere; particularly, on how gases which influence the climate are exchanged between the biosphere and atmosphere. Researchers from the Max Planck Institute for Nuclear Physics have now carefully analysed which organic gases are emitted from plants.







  • Wal-Mart To Go Solar To Save Energy
  • Analysis: Transition From Oil To Take Time
  • Hybrid Refueler Truck Could Cut Energy Use
  • Analysis: Gazprom's U.S. Road Show

  • Duke Power May Build Nuclear Power Plants
  • Innovative 'Recycling' Project Could Reduce US Inventory Of Spent Nuclear Fuel
  • Feds Unveil Yucca Mountain Cleanup Plans
  • US Congress Wants Landmark Nuclear Deal With India To Be Transparent

  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source



  • Farm Talks Collapse In Geneva
  • Defeating The 'Superpests'
  • Crop Scientists Improve "Supergrain" For Impoverished Farmers
  • Gourmet Space Dinner On Greenland Icecap

  • GM Hires Russian Nuclear Scientists To Develop New Auto Technology
  • Japan Creates The World's Fastest Electric Sedan
  • Motorists To Pay 'Congestion' Charge Over Broader Swath Of London
  • Solar Cars Driving Towards A Hydrogen Future

  • Pentagon Announces Possible Pilot Training Contract With Taiwan
  • US Forced Israel To Freeze Venezuelan F-16 Contract: Ministry
  • Wright Brothers Upstaged! Dinos Invented Biplanes
  • Boeing Awarded Common Bomber Mission Planning Enterprise Contract

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement