Energy News  
Tough Tubes: Carbon Nanotubes Endure Heavy Wear And Tear

Pushparaj and his team created a free-standing, macroscopic, two-millimeter square block of carbon nanotubes, made up of millions of individual, vertically aligned, multiwalled nanotubes. The researchers then compressed the block between two steels plates in a vice-like machine. The team repeated this process more than 500,000 times, recording precisely how much force was required to compress the nanotube block down to about 25 percent of its original height. Even after 500,000 compressions, the nanotube block retained its original shape and mechanical properties. Similarly, the nanotube block also retained its original electrical conductance.
by Staff Writers
Troy NY (SPX) Jul 16, 2007
The ability of carbon nanotubes to withstand repeated stress yet retain their structural and mechanical integrity is similar to the behavior of soft tissue, according to a new study from Rensselaer Polytechnic Institute. When paired with the strong electrical conductivity of carbon nanotubes, this ability to endure wear and tear, or fatigue, suggests the materials could be used to create structures that mimic artificial muscles or interesting electro-mechanical systems, researchers said.

The report, "Fatigue resistance of aligned carbon nanotube arrays under cyclic compression," appears in the July issue of Nature Nanotechnology. Despite extensive research over the past decade into the mechanical properties of carbon nanotube structures, this study is the first to explore and document their fatigue behavior, said co-author Victor Pushparaj, a senior research specialist in Rensselaer's department of materials science and engineering.

"The idea was to show how fatigue affects nanotube structures over the lifetime of a device that incorporates carbon nanotubes," Pushparaj said. "Even when exposed to high levels of stress, the nanotubes held up extremely well. The behavior is reminiscent of the mechanics of soft tissues, such as a shoulder muscle or stomach wall, which expand and contract millions of times over a human lifetime."

Pushparaj and his team created a free-standing, macroscopic, two-millimeter square block of carbon nanotubes, made up of millions of individual, vertically aligned, multiwalled nanotubes. The researchers then compressed the block between two steels plates in a vice-like machine.

The team repeated this process more than 500,000 times, recording precisely how much force was required to compress the nanotube block down to about 25 percent of its original height.

Even after 500,000 compressions, the nanotube block retained its original shape and mechanical properties. Similarly, the nanotube block also retained its original electrical conductance.

In the initial stages of the experiment, the force needed to compress the nanotube block decreased slightly, but soon stabilized to a constant value, said Jonghwan Suhr, an assistant professor of mechanical engineering at the University of Nevada in Reno, who received his doctorate from Rensselaer in 2005, and with Pushparaj contributed equally to this report.

As the researchers continued to compress the block, the individual nanotube arrays collectively and gradually adjusted to getting squeezed, showing very little fatigue. This "shape memory," or viscoelastic-like behavior (although the individual nanotubes are not themselves viscoelastic), is often observed in soft-tissue materials.

While more promising than polymers and other engineered materials that exhibit shape memory, carbon nanotubes by themselves do not perform well enough to be used as a synthetic biomaterial. But Pushparaj and his fellow researchers are combining carbon nanotubes with different polymers to create a material they anticipate will perform as well as soft tissue. The team is also using results from this study to develop mechanically compliant electrical probes and interconnects.

In addition to Pushparaj and Suhr, other contributing authors of the paper include Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer; Omkaram Nalamasu, professor of chemistry and materials science and engineering at Rensselaer; Lijie Ci, Rensselaer research associate; Subbalakshmi Sreekala, a research associate in the department of mechanical and aerospace engineering at Princeton University; and X. Zhang, research associate in the school of materials science and engineering at Shanghai Jiao Tong University.

Community
Email This Article
Comment On This Article

Related Links
Rensselaer Polytechnic Institute
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Breakthrough Polymer Is Lightweight, Conductive, Corrosion-Proof, Flexible
Charlottesville VA (SPX) Jul 16, 2007
University of Virginia engineering professor Mool C. Gupta and his team have used carbon nanotubes to unite the virtues of plastics and metals in a new ultra-lightweight, conductive material that may revolutionize electromagnetic shielding and more. The team's innovation will be honored with a Nano50 award from Nanotech Briefs magazine, which "recognizes the top 50 technologies, products and innovators that have significantly impacted nanotechnology."







  • Eco-Architecture Takes Root In Thailand
  • ENDESA Starts Up The Poggi Alti Wind Farm In Italy
  • Invenergy Starts Commercial Operation Of 130MW Camp Springs Wind Energy Center In Texas
  • Toronto Shifts To LED Lighting As Answer For Energy Efficiency

  • IAEA Develops New Strategy To Recover Orphan Radioactive Sources
  • Natural Gas And Uranium Discovered In Uganda
  • Kazakhstan Offers To Join International Fusion Power Project
  • Bush And Singh Discuss Nuclear Pact

  • Invisible Gases Form Most Organic Haze In Both Urban And Rural Areas
  • BAE Systems Completes Major New Facility For Ionospheric Physics Research
  • NASA Satellite Captures First View Of Night-Shining Clouds
  • Main Component For World Latest Satellite To Measure Greenhouse Gases Delivered

  • Scientists Close In On Missing Carbon Sink
  • Indonesia Aims To Halve Haze-Causing Fires
  • Researchers Demonstrate Way To Control Tree Height
  • Human Activities Increasing Carbon Sequestration In Forests

  • Simulated Crop Provides Answer To Irrigation Issues
  • Russia Seeks Nine Billion Dollars WTO Farm Subsidies
  • Emission Choices Lead To Starkly Different Futures For Northeast Agriculture
  • Cheap Fuel Or Pricey Food

  • Florida To Adopt Tough Auto Emission Standards
  • Economical And Cleaner Cars With Lean-Burn Catalytic Converter
  • Ford To Use Soy-Based Car Seats
  • Smart Traffic Boxes Could Help Monitor Roads And Save Money

  • Boeing Awarded Two Billion Dollar A-10 Wing Contract
  • Raytheon Awarded Rolling Airframe Missile Contracts Valued At Nearly 146 Million Dollars
  • Europe Bans All Indonesian Airlines From EU Airspace
  • France Supports Cap On Airline Carbon Emissions

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement