Energy News  
Titan's Rocks Of Ice

"I think we landed in a stream bed. The rocks you can see in the picture are solid water."

Moffett Field CA (SPX) Nov 08, 2005
Huygens sent back only one picture from the surface of Titan. Some people ask, "Are there any more pictures?" They're used to the Mars rovers, where every day you get a new picture because they're moving.

Huygens doesn't have any wheels or any motion, so it lands and whatever orientation the camera's pointing in, that's the scene, the only scene it takes a picture of. So we have an hour and a half of the same picture. But it's a pretty cool picture.

I think we landed in a stream bed. The rocks you can see in the picture are solid water.

Titan is minus 180 Celsius (minus 292 Fahrenheit). At this cold temperature, H2O is a rock. It is not a volatile; it is not a fluid; it is not an ice, in the sense that you might think of ice as an easily malleable solid form of a fluid. It is a rock. It is as hard as granite and acts like granite.

The stream bed was probably made by liquid methane. So we're probably sitting in the dry bed of a liquid methane stream. Now, if these rocks are solid water, they would sink in liquid methane, just like rocks on Earth sink in water. And rocks are hard, so they're going to get tumbled by liquid and they're going to be rounded. The rocks look like stream pebbles.

There are some puzzles with this image, though. One puzzle is, Are the rocks really made out of water? When the probe landed, we said, That's got to be water. What else could it be? But there are some problems with that interpretation. The spectral data is not consistent with water. The GCMS team hasn't published their results and haven't shown the data, but they say that they don't see the spectral signature of water.

But even if you had a small impurities mixed in with the water, they might hide the spectral signature. For example, if you mix in a little bit of organic goo, it looks brown. Imagine a dirty snow bank. It's hard to tell if it's really snow, because snow is supposed to be white. So small-level impurities could hide the water.

The other thing is that the dielectric constant of the ground, as measured by the Huygens impedance probe, is not consistent with water ice. But the antenna of the probe got bent in the landing, so we're not sure of its calibration. We've got to sort that out. So we can't rule out water.

If we look at the density of Titan, it's 1.9 grams per square centimeter, which means it's got to be 50 percent water by mass. This is the outer solar system. Everything is 50 percent water by mass, roughly. Titan is no exception. Only Io is not, because it's been dehydrated. And the water's all going to be on the top.

Billions of years ago, when the Earth formed, it was completely molten. Everything was molten. And it cooled, and the rock solidified. That was the primary source of rocks on Earth, the solidification of the magma Earth. Rocks on Earth are mainly silicates, they're mostly made out of glass, SiO2-type substances. They melt at very high temperatures, a couple of thousand degrees. So once the Earth cooled down below a couple thousand degrees, it became full of rocks.

Think of Titan the same way. Titan formed very hot, completely molten. When it cooled down to a couple thousand degrees, half of it condensed to form rocks. The other half was still water, still steam. It didn't condense until the temperature fell below 0 degrees Celsius (minus 32 degrees Fahrenheit). Then the water all turned to solid and became hard, and as the temperature became colder, that stuff got harder and harder.

So when Titan formed, it should have formed with a rocky inside, and then a huge layer of frozen water on top of it. So this 50 percent water by mass, we expect that mass to be on the top, to be the crust of Titan. That's why we think that Titan has a several-thousand-kilometer-thick layer of ice on the surface. On Titan we don't call it an ocean, we call it the mantle, because it's not liquid, it's solid.

Some people think there could be a liquid underneath, a methane-ammonia-water mixture, but we still expect the surface to be basically frozen water. It's just like Europa. The only difference is that it's got an atmosphere above it. That's why we can't figure out what the rocks can be besides water. Because all the other moons that are like it - Ganymede, Callisto, Europa - when we look at their surfaces, they're water. If you take off Titan's atmosphere, underneath it all, it should be just like the Galilean moons: water-dominated surfaces.

So if it's not water, what could it possibly be? I don't know. This is a real puzzle. And people are lining up on different sides. There are people who say, It's definitely not water. When I ask them, What is it? they go, I don't know, but it's not water. The best number two guess would be carbon dioxide, CO2. But from an abundance point of view it's hard to imagine, that the surface is really littered with CO2 rocks and not water rocks.

See Part I and 2.

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Naming New Lands - September Flyby, No Labels
Pasadena CA (JPL) Nov 07, 2005
Like an ancient mariner charting the coastline of an unexplored wilderness, Cassini's repeated encounters with Titan are turning a mysterious world into a more familiar place.







  • Sweden Runs On Biofuels En Route To Cleaner Cars
  • Delaware To Lead Program To Develop Very High Efficiency Solar Cell
  • British Government To Require Biofuels
  • China To Spend 180 Billion Dollars To Boost Renewable Energy Use

  • Experts Blast Bush On India Nuke Deal
  • Duke Power May Build Nuclear Power Plants
  • Innovative 'Recycling' Project Could Reduce US Inventory Of Spent Nuclear Fuel
  • Feds Unveil Yucca Mountain Cleanup Plans

  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source



  • Giant Bill For Turkey Over EU Environmental Norms
  • Oxfam: Europe's Farm Subsidies 'Unfair'
  • Farm Talks Collapse In Geneva
  • Defeating The 'Superpests'

  • GM Hires Russian Nuclear Scientists To Develop New Auto Technology
  • Japan Creates The World's Fastest Electric Sedan
  • Motorists To Pay 'Congestion' Charge Over Broader Swath Of London
  • Solar Cars Driving Towards A Hydrogen Future

  • EADS Considers Aircraft Assembly Line In China: Report
  • Boeing Projects $770bn Market For New Airplanes In Asia-Pacific
  • UN Hails Musharraf's Fighter Jet Delay
  • Leader Envisions Future of Air Mobility Command

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement