Energy News  
Tile Test System Could Make Space Shuttle Safer

Onboard a KC-135 aircraft, astronaut Rex J. Walheim uses a tool similar to a putty knife to remove excess material from a membrane-covered cavity on a damaged section of thermal tiles. The aircraft flew a series of special parabolas to afford a number of zero-g windows for rehearsing extravehicular activity (EVA) tasks for repairing damaged Shuttle tiles. NASA photo.

Wright-Patterson AFB (SPX) Oct 24, 2005
In February 2003, Space Shuttle Columbia disintegrated on re-entry, killing all seven crewmembers. The shuttle was hit by a piece of foam that damaged the thermal-protection tiles on its left wing, leading to failure when superheated air surged into the wing and, possibly, a wheel compartment.

UA Civil Engineering Professor Tribikam Kundu now is part of a team that's designing a way to test thermal protection tiles both on the ground and in flight to prevent similar accidents.

Kundu spent the summer at Wright-Patterson Air Force Base in Dayton, Ohio working on ways to non-destructively test the tiles. The work was done in labs run by the Non Destructive Evaluation Branch of the Air Force Research Laboratory. Kundu was testing the tiles for poor adhesion or internal cracks. The project is aimed at developing a real-time, on-line monitoring system for the tiles on a military version of the space shuttle.

Professor Kundu and his graduate students are continuing the project on the UA campus by using computer models to further develop the testing technique and to determine the number and position of sensors needed to make it work most efficiently. The project is being conducted under the supervision of the Air Force Materials and Manufacturing Directorate.

"When the space shuttle re-enters the atmosphere, the air friction generates enough heat to melt any kind of metal," Kundu explained. "The special silicon-carbide foam tiles are attached to the outer surface of the shuttle. They protect it from the high heat generated when the shuttle re-enters the Earth's atmosphere. The inside of the tile is like a sponge with many air pockets that serve as shields for the outside heat."

How the Tiles Break Down

  • The tiles can delaminate from a space vehicle (such as the shuttle). During re-entry partially delaminated tiles can rip away, exposing the metal underneath.

  • The tiles can develop internal cracks that provide pathways for heat to reach the underlying metal.

  • The tiles can be damaged by collisions with some of the millions of tiny space junk particles that are leftover debris from previous missions. Even a BB-sized particle traveling at high speed could damage a tile.

    This past summer, Kundu and Air Force researchers demonstrated that ultrasonic signals generated by piezo-electric transducers can be used to test how well the tiles are bonded to the shuttle or if they contain hidden cracks. The signals were generated by a transducer and sent to a receiver through an aluminum test frame.

    Elastic Waves Tell the Story "If you have perfect bonding and no cracks, the signal energy will be low at the receiver," Kundu said. "As soon as the energy level goes up, that's an indication of a delamination defect."

    Ultrasonic waves are what engineers call "elastic waves." We hear elastic waves as sound waves between about 20 Hz and 20 KHz. Above 20KHz, they're called ultrasonic waves. These waves can travel through the air like sound waves or they can travel through solid materials, such as the shuttle tiles. When they travel through the tiles, they generate a small amount of stress.

    "We have demonstrated this system as a proof-of-concept at the Air Force Research laboratory," Kundu said. "Now the question is, 'How do we design a system to make it work in the real world?'" That's now the focus of his ongoing research.

    Kundu also is working on ways to detect when the tiles are hit by space junk so they can be inspected for damage.

    "We can permanently mount a sensor on the bottom of each tile that will send a signal when it is hit," he said. The sensors would be wireless so engineers would not have to worry about running hundreds of feet of cable to the tiles. "But we may not need a sensor on every tile," he explained.

    "Maybe we only need a sensor every few rows." This could be a 3-by-3 area, covering nine tiles or a 6-by-6 area covering 36 tiles.

    Using DPSM to Find the Answers Kundu is attacking these problems with a computer modeling technique called DPSM (Distributed Point Source Method). This is a numerical analysis technique that is simpler and faster than methods now commonly used by engineers, such as finite element analysis.

    "Although we're using DPSM to model the elastic wave propagation through a tile structure, it can be applied to a wide variety of engineering problems," he said.

    Kundu worked on the DPSM method during summer research projects between 1998 and 2004 at the Ecole Normale Superieure in Cachan, France with Professor Dominique Placko. They are now writing a book about DPSM.

    Kundu and Professor Douglas Adams of Purdue University are working on the thermal-protection tile project in collaboration with the research group leader Dr. Kumar Jata of the Air Force Research Laboratory at Wright-Patterson Air Force Base.

    Community
    Email This Article
    Comment On This Article

    Related Links
    The Air Force Research Laboratory
    Tribikram Kundu's Homepage
    SpaceDaily
    Search SpaceDaily
    Subscribe To SpaceDaily Express
    Space Shuttle News at Space-Travel.Com



    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


    NASA Selects Schneider Lenses For NextGen Space Shuttle Flight Safety Systems
    Hauppauge NY (SPX) Oct 21, 2005
    Schneider Optics has announced that NASA has implemented Schneider lenses in two mission-critical space shuttle flight safety systems, as part of NASA's Shuttle Return to Flight Program.







  • Scientists Synthesize Cheap, Easy-to-Make Ultra-thin Photovoltaic Films
  • Oil Prices Dip After Hurricane Moves Out To Sea
  • Outlook Bright For Hydrogen Biofuel Cell
  • World's First Biogas Train Makes Maiden Voyage In Sweden

  • India Calls For Action Against Nuclear Proliferators
  • France Announces Part-Privatisation Of Energy Giant EDF
  • US Blacklists Eight North Korea Entities Over WMD Proliferation
  • India-U.S. Nuke Deal Uphill Task

  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source



  • Farm Talks Collapse In Geneva
  • Defeating The 'Superpests'
  • Crop Scientists Improve "Supergrain" For Impoverished Farmers
  • Gourmet Space Dinner On Greenland Icecap

  • Japan Creates The World's Fastest Electric Sedan
  • Motorists To Pay 'Congestion' Charge Over Broader Swath Of London
  • Solar Cars Driving Towards A Hydrogen Future
  • Mapflow And DTO Announce Dublin Satellite Tolling Study

  • US Forced Israel To Freeze Venezuelan F-16 Contract: Ministry
  • Wright Brothers Upstaged! Dinos Invented Biplanes
  • Boeing Awarded Common Bomber Mission Planning Enterprise Contract
  • Capability Assessment Helps AF Prepare For Future

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement