![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Oroville - Sept. 16, 2000 TRW Inc. has taken a huge stride toward providing more affordable access to space with the successful initial static-fire testing of a low-cost booster engine based on TRW's pintle injection technology. The 650,000-pound thrust Low Cost Pintle Engine (LCPE), one of the largest liquid rocket engines built since Saturn F-1 engines powered Apollo program flights in the 1970s, was designed as a simple, easy-to-manufacture, low-cost engine. The LCPE has parts made from common steel alloys using standard industrial fabrication techniques, employs ablative cooling techniques instead of more expensive regenerative cooling, and features the least complex type of rocket propellant injector - a single element coaxial pintle injector. "Most engines are designed for maximum performance and minimum weight, but we deliberately set out to develop an engine that minimizes cost while retaining excellent performance," said Al Frew, vice president and general manager, TRW Space & Technology Division. "We believe this engine will cost 50 to 75 percent less than comparable liquid hydrogen boosters. By reducing engine costs, which make up almost half of the cost of a launch vehicle, we will reduce the cost of launch vehicles and access to space for government and commercial customers." The LCPE was subjected this summer to hot fire testing at 100 percent of its rated thrust as well as at a 65 percent throttle condition at NASA's John C. Stennis Space Center in Mississippi. TRW changed the pintle injector configuration three times during testing to explore the engine's performance envelope; engineers also replaced the ablative chamber once while the engine was on the test stand - demonstrating the LCPE's ease of operation. "The LCPE has demonstrated nominal performance and absolute combustion stability throughout its testing," said Kathy Gavitt, TRW's LCPE program manager. "This testing is an important first step in validating that a low-cost pintle engine can substantially lower the cost of future launch vehicles." Engine testing is planned to continue throughout the year under a cooperative agreement between TRW and NASA's Marshall Space Flight Center. The key element of the LCPE's design is its single element coaxial pintle injector, used to introduce propellants into the combustion chamber. TRW has used this design in nearly all of its bipropellant liquid rocket engines. This includes the Lunar Module Descent Engine (LMDE) which safely landed 12 astronauts on the lunar surface between 1969 and 1972 and was critical in the rescue of Apollo 13.
Other notable features of the LCPE are:
TRW has tested more than 50 different pintle injector engines, using more than 25 different propellant combinations with complete combustion stability and no need for acoustic cavities or baffles. Previously, pintle injector engines were successfully tested with liquid hydrogen and liquid oxygen at thrust levels of 16,000 and 40,000 pounds. TRW has flown more than 140 engines ranging in size from the 100-pound thrust liquid apogee engine used on NASA's Chandra X-ray Observatory to the 10,000-pound thrust Delta and LMDE engines. Community Email This Article Comment On This Article Related Links TRW Technical Paper - PDF File TRW Main site SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express The latest information about the Commercial Satellite Industry
![]() ![]() Globalstar recently announced that it has signed a definitive agreement to acquire 100% of the stock of Globalstar Americas Telecommunications, Globalstar Americas Holdings, and Astral Technologies Investments. |
![]() |
|
|
|
|
|
|
|
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |