Energy News  
Suzaku Snaps First Complete X-ray View Of A Galaxy Cluster

This Suzaku image shows X-ray emission from hot gas throughout the galaxy cluster PKS 0745-191. Brighter colors indicate greater X-ray emission. The circle is 11.2 million light-years across and marks the region where cold gas is now entering the cluster. Inset: A Hubble optical image of the cluster's central galaxies is shown at the correct scale. Credit: NASA/ISAS/Suzaku/M. George, et al. For a larger version of this image please go here.
by Francis Reddy
Berkeley CA (SPX) May 29, 2009
The joint Japan-U.S. Suzaku mission is providing new insight into how assemblages of thousands of galaxies pull themselves together. For the first time, Suzaku has detected X-ray-emitting gas at a cluster's outskirts, where a billion-year plunge to the center begins.

"These Suzaku observations are exciting because we can finally see how these structures, the largest bound objects in the universe, grow even more massive," said Matt George, the study's lead author at the University of California, Berkeley.

The team trained Suzaku's X-ray telescopes on the cluster PKS 0745-191, which lies 1.3 billion light-years away in the southern constellation Puppis. Between May 11 and 14, 2007, Suzaku acquired five images of the million-degree gas that permeates the cluster.

By looking at a cluster in X-rays, astronomers can measure the temperature and density of the gas, which provides clues about the gas pressure and total mass of the cluster. Astronomers expect that the gas in the inner part of a galaxy cluster has settled into a "relaxed" state in equilibrium with the cluster's gravity. This means that the hottest, densest gas lies near the cluster's center, and temperatures and densities steadily decline at greater distances.

In the cluster's outer regions, though, the gas is no longer in an orderly state because matter is still falling inward. "Clusters are the most massive, relaxed objects in the universe, and they are continuing to form now," said team member Andy Fabian at the Cambridge Institute of Astronomy in the UK. The distance where order turns to chaos is referred to as the cluster's "virial radius."

For the first time, this study shows the X-ray emission and gas density and temperature out to - and even beyond - the virial radius, where the cluster continues to form. "It gives us the first complete X-ray view of a cluster of galaxies," Fabian said.

In PKS 0745-191, the gas temperature peaks at 164 million degrees Fahrenheit (91 million C) about 1.1 million light-years from the cluster's center.

Then, the temperature declines smoothly with distance, dropping to 45 million F (25 million C) more than 5.6 million light-years from the center. The findings appear in the May 11 issue of Monthly Notices of the Royal Astronomical Society.

To discern the cluster's outermost X-ray emission requires detectors with exceptionally low background noise. Suzaku's advanced X-ray detectors, coupled with a low-altitude orbit, give the observatory much lower background noise than other X-ray satellites. The low orbit means that Suzaku is largely protected by Earth's magnetic field, which deflects energetic particles from the sun and beyond.

"With more Suzaku observations in the outskirts of other galaxy clusters, we'll get a better picture of how these massive structures evolve," added George.

Suzaku ("red bird of the south") was launched on July 10, 2005. The observatory was developed at the Japanese Institute of Space and Astronautical Science (ISAS), which is part of the Japan Aerospace Exploration Agency (JAXA), in collaboration with NASA and other Japanese and U.S. institutions.

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Suzaku mission
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


An Exploding Star In An Exploding Galaxy
Bonn, Germany (SPX) May 28, 2009
An international team of radio astronomers have discovered the secret explosion of a massive star, a new supernova, in the nearby galaxy M82. Despite being the closest supernova discovered in the last five years, the explosion is exclusively detectable at radio wavelengths since the dense gas and dust surrounding the exploding star leave it invisible in other wavebands. Without the obscura ... read more







The content herein, unless otherwise known to be public domain, are Copyright 1995-2009 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement