Energy News  
Spitzer Detects Organic Chemistry In Highly Luminous Galaxy

  • full size chart
    NASA's Spitzer Space Telescope has detected the building blocks of life in the distant universe, albeit in a violent milieu. Training its powerful infrared eye on a faint object located at a distance of 3.2 billion light-years (inset), Spitzer has observed t he presence of water and organic molecules in the galaxy IRAS F00183-7111. With an active galactic nucleus, this is one of the most luminous galaxies in the universe, rivaling the energy output of a quasar. Because it is heavily obscured by dust, most of its luminosity is radiated at infrared wavelengths.

    The infrared spectrograph instrument onboard Spitzer breaks light into its constituent colors, much as a prism does for visible light. The image shows a low-resolution spectrum of the galaxy obtained by the spectrograph at wavelengths between 4 and 20 microns. Spectra are graphical representations of a celestial object's unique blend of light. Characteristic patterns, or fingerprints, within the spectra allow astronomers to identify the object's chemical composition and to determine such physical properties as temperature and density.

    The broad depression in the center of the spectrum denotes the presence of silicates (chemically similar to beach sand) in the galaxy. An emission peak (red) within the bottom of the trough is the chemical signature for molecular hydrogen. The hydrocarbons (orange) are organic molecules comprised of carbon and hydrogen, two of the most common elements on Earth. Since it has taken more than three billion years for the light from the galaxy to reach Earth, it is intriguing to note the presence of organics in a distant galaxy at a time when life is thought to have started forming on our home planet.

    Additional features in the spectrum reveal the presence of water ice (blue), carbon dioxide ice (green) and carbon monoxide (purple) in both gas and solid forms. The magenta peak corresponds to singly ionized neon gas, a spectral line often used by astronomers as a diagnostic of star formation rates in distant galaxies.

    The Spitzer spectrum is the result of only 14 minutes of integration time, highlighting the power of the infrared spectrograph to unlock the secrets of distant galaxies. Image credits: NASA/JPL-Caltech/L. Armus (SSC/Caltech), H. Kline (JPL), Digital Sky Survey. More release images at First series of science images and captions


  • Ithaca - Dec 19, 2003
    An instrument aboard NASA's recently launched orbiting infrared observatory has found evidence of organic molecules in an enormously powerful galaxy some 3.25 billion light years from the Earth. So powerful is the source, that it is equal to 10 trillion times the luminosity of the sun, making it one of the brightest galaxies ever detected.

    The instrument on the newly named Spitzer Space Telescope (previously called the Space Infrared Telescope Facility, or SIRTF) is the infrared spectrograph, or IRS. James Houck, professor of astronomy at Cornell University, heads the scientific team on the $39 million IRS contract with the Jet Propulsion Laboratory, Pasadena, Calif., a division of the California Institute of Technology, manager of the mission for NASA.

    Houck participated in a press conference at NASA headquarters in Washington, D.C., today (Dec. 18) at which the first observations and data from the half-billion-dollar observatory, launched Aug. 25, were released.

    Among the most spectacular details released were dazzling images taken with the space telescope's infrared-array camera and with its multiband-imaging photometer. The images include a glowing stellar nursery; a swirling, dusty galaxy; a disc of planet-forming debris; and organic material in the distant universe.

    The IRS, one of three instruments carried by the space telescope, is the most sensitive infrared spectrograph ever to go into space. In less than 15 minutes it produced a spectrum of the distant galaxy IRAS 00183, first observed by the infrared astronomical satellite (IRAS) in 1983.

    The spectrum "gives evidence for organic chemistry in a distant galaxy shortly after the formation of the Earth," says Houck. (While the Spitzer observatory's cameras take infrared snapshots of distant galaxies and dust clouds, and objects too cool to emit visible light, the IRS determines their precise infrared colors. Astronomers are then able to read the peaks and valleys in the spectrum, called emission and absorption lines, to determine the chemical mix of the object being observed.)

    In an optical image, the IRAS galaxy appears as no more than a faint smudge. But the IRS spectrum - the first detailed look at the galaxy - shows a broad silicate feature. The dominant absorber of visible energy is tiny silicate dust particles. The silicate dust is so opaque that only a small percentage of the visible light escapes the galaxy, says Houck.

    "We are seeing the merger of two galaxies. This produces one of two effects: Either what we are seeing is a brief flash of incredibly strong star formation, or one or both of the galaxies contained a black hole before colliding. The massive black holes are releasing the energy by swallowing stars and gas," says Houck. In both cases, he says, the collision would compress gas that would trigger the star formation or the release of energy from the black hole, a process called "feeding the monster."

    Both scenarios have problems, Houck concedes. "One is, how do you get enough gas close enough to a black hole to make all this happen? And how do you get stars to form so quickly all at the same time?"

    Houck's IRS team also released a spectrum of HH46IR, a "dusty, dirty cloud" in our galaxy, the Milky Way, that visible light is unable to penetrate. The spectrum shows the cloud to be a region of star formation containing organic materials, including methyl alcohol, carbon dioxide ice and carbon monoxide gas and ice.

    Houck also notes that the IRS is "working well" and is likely to be "a workhorse for years to come." During November, he relates, the instrument was subject to a massive proton "storm" in space, with 1.6 billion atomic particles (mostly protons) bombarding a square centimeter of the instrument in just two days. "It was a staggering event," he says.

    Community
    Email This Article
    Comment On This Article

    Related Links
    Spitzer Space Telescope at JPL
    SpaceDaily
    Search SpaceDaily
    Subscribe To SpaceDaily Express
    Space Telescope News and Technology at Skynightly.com



    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


    Intelligent Agents And Robotic Telescopes Help Astronomers Keep Up
    Strasbourg - Oct 13, 2003
    "Intelligent Agent" computer programs are roaming the Internet and watching the skies. It may sound like science fiction, but these programs will help astronomers detect some of the most dramatic events in the universe, such as massive supernova explosions.







  • Gas Hydrates Offer New Major Energy Source
  • Research Generates Reliable Energy Source During Outages
  • A Hot Time For Cold Superconductors
  • Power, Water Shortages Feared To Continue

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Hewitt Pledges Support For Aerospace Industry
  • National Consortium Picks Aviation Technology Test Site
  • Wright Flyer Takes To The Sky In Las Vegas
  • Aurora Builds Low-speed Wind Tunnel

  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems
  • Boeing To Build Space-borne Power Generator
  • New High-Purity Plutonium Sources Produced At Los Alamos

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement