Energy News  
Special Coating Greatly Improves Solar Cell Performance

File image.
by Staff Writers
Evanston IL (SPX) Feb 25, 2008
The energy from sunlight falling on only 9 percent of California's Mojave Desert could power all of the United States' electricity needs if the energy could be efficiently harvested, according to some estimates. Unfortunately, current-generation solar cell technologies are too expensive and inefficient for wide-scale commercial applications.

A team of Northwestern University researchers has developed a new anode coating strategy that significantly enhances the efficiency of solar energy power conversion. A paper about the work, which focuses on "engineering" organic material-electrode interfaces in bulk-heterojunction organic solar cells, is published online this week in the Proceedings of the National Academy of Sciences (PNAS).

This breakthrough in solar energy conversion promises to bring researchers and developers worldwide closer to the goal of producing cheaper, more manufacturable and more easily implemented solar cells. Such technology would greatly reduce our dependence on burning fossil fuels for electricity production as well as reduce the combustion product: carbon dioxide, a global warming greenhouse gas.

Tobin J. Marks, the Vladimir N. Ipatieff Research Professor in Chemistry in the Weinberg College of Arts and Sciences and professor of materials science and engineering, and Robert Chang, professor of materials science and engineering in the McCormick School of Engineering and Applied Science, led the research team. Other Northwestern team members were researcher Bruce Buchholz and graduate students Michael D. Irwin and Alexander W. Hains.

Of the new solar energy conversion technologies on the horizon, solar cells fabricated from plastic-like organic materials are attractive because they could be printed cheaply and quickly by a process similar to printing a newspaper (roll-to-roll processing).

To date, the most successful type of plastic photovoltaic cell is called a "bulk-heterojunction cell." This cell utilizes a layer consisting of a mixture of a semiconducting polymer (an electron donor) and a fullerene (an electron acceptor) sandwiched between two electrodes -- one a transparent electrically conducting electrode (the anode, which is usually a tin-doped indium oxide) and a metal (the cathode), such as aluminum.

When light enters through the transparent conducting electrode and strikes the light-absorbing polymer layer, electricity flows due to formation of pairs of electrons and holes that separate and move to the cathode and anode, respectively.

These moving charges are the electrical current (photocurrent) generated by the cell and are collected by the two electrodes, assuming that each type of charge can readily traverse the interface between the polymer-fullerene active layer and the correct electrode to carry away the charge -- a significant challenge.

The Northwestern researchers employed a laser deposition technique that coats the anode with a very thin (5 to 10 nanometers thick) and smooth layer of nickel oxide. This material is an excellent conductor for extracting holes from the irradiated cell but, equally important, is an efficient "blocker" which prevents misdirected electrons from straying to the "wrong" electrode (the anode), which would compromise the cell energy conversion efficiency.

In contrast to earlier approaches for anode coating, the Northwestern nickel oxide coating is cheap, electrically homogeneous and non-corrosive. In the case of model bulk-heterojunction cells, the Northwestern team has increased the cell voltage by approximately 40 percent and the power conversion efficiency from approximately 3 to 4 percent to 5.2 to 5.6 percent.

The researchers currently are working on further tuning the anode coating technique for increased hole extraction and electron blocking efficiency and moving to production-scaling experiments on flexible substrates.

Community
Email This Article
Comment On This Article

Related Links
Northwestern University
All About Solar Energy at SolarDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Masdar Headquarters To Be Located In World's First Positive Energy Mixed-Use Building
Abu Dhabi, UAE (SPX) Feb 25, 2008
Masdar has announced that it has chosen Chicago architecture firm Adrian Smith + Gordon Gill Architecture (AS+GG) to design its headquarters in Abu Dhabi's Masdar City, the world's first zero-carbon, zero-waste city fully powered by renewable energy. The headquarters will be the world's first large-scale, mixed-use "positive energy" building, producing more energy than it consumes.







  • Greenshift Strikes Oil At Western New York Energy
  • Alternative Energy Technology Center Announces Cellulosic Ethanol Breakthrough
  • Outside View: Russian energy firms align
  • Germany may drop biofuel boost

  • Argentina, Brazil to build joint uranium enrichment plant
  • UniStar Nuclear Energy Identifies Constellation Energy Site In NY State For New Reactor
  • Outside View: Nuclear fever in the Baltics
  • India must pass by July key India-US nuclear deal: US senators

  • NASA Co-Sponsors Ocean Voyage To Probe Climate-Relevant Gases
  • Satellite Data To Deliver State-Of-The-Art Air Quality Information
  • New Model Revises Estimates Of Terrestrial Carbon Dioxide Uptake
  • A Breathable Earth

  • Amazon Corridors Far Too Narrow
  • First Datasets For US Biomass And Carbon Dataset Now Available
  • Skin disease linked with deforestation
  • No amnesty for Amazon deforestation: Brazil

  • Washington University Unveils Draft Sequence Of Corn Genome
  • Rising prices could force UN to cut food aid: WFP chief
  • What Farmers Think About GM Crops
  • Biodiversity 'doomsday vault' comes to life in Arctic

  • Lithium Technology Receives Order For Hybrid Bus Application
  • Hydrogen-fueled cars stuck at the gate
  • A Greener Way To Power Cars
  • Porsche takes on London mayor over road pricing scheme

  • Environmentalists climb on Heathrow jet in airport protest: officials
  • NASA opens a rotary wing research project
  • All-star line-up at first Singapore Airshow
  • Military Aircraft To Perform Aviation Safety Research

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement