Energy News  
Smart Plastics Change Shape With Light

A sample of "smart" plastic (a) is elongated and irradiated on the right-hand side with ultraviolet light, forming a temporary shape (b). Photos (c) and (d) show the plastic recovering its original shape after exposure to UV light of a different wavelength. Scale is in centimeters. Photo credit: GKSS Research Center.

Cambridge MA (SPX) Apr 18, 2005
Picture a flower that opens when facing the sunlight. In work that mimics that sensitivity to light, an MIT engineer and German colleagues have created the first plastics that can be deformed and temporarily fixed in a second, new shape by illumination with light having certain wavelengths.

These programmed materials will only switch back to their original shape when exposed to light of specific different wavelengths.

The work, to be reported in the April 14 issue of Nature, could have potential applications in a variety of fields, including minimally invasive surgery.

Imagine, for example, a "string" of plastic that a doctor threads into the body through a tiny incision.

When activated by light via a fiber-optic probe, that slender string might change into a corkscrew-shaped stent for keeping blood vessels open.

What about staples that open on command, or paper clips that relax as soon as you don't need them anymore? Again, light could do the job.

"This is really a new family of materials that can change from one shape to another by having light shined on them," said Institute Professor Robert Langer of MIT.

Langer co-authored the paper with Andreas Lendlein, Hongyan Jiang, and Oliver J�nger. Lendlein, a former MIT visiting scientist, is institute director at the GKSS research center in Teltow, Germany. With Jiang and J�nger, he is also affiliated with RWTH Aachen, Germany.

Shape Memory

Plastics with "shape-memory" that can change shape in response to a temperature increase are well known. In 2001 Langer and Lendlein were the first to report biodegradable versions of these materials in the Proceedings of the National Academy of Sciences.

A year later the researchers introduced thermoplastic, biodegradable shape-memory polymers and demonstrated a nifty application giving a flavor of the innovation potential in the medical field: a smart suture that ties itself into the perfect knot.

That work was described in the journal Science; mnemoScience GmbH of Aachen, Germany was developed to commercialize the discovery.

"Now instead of heat , we can induce the shape-memory effect in polymers with light," said Lendlein.

Key to the work: "molecular switches," or photosensitive groups that are grafted onto a permanent polymer network.

The resulting photosensitive polymer film is then stretched with an external stress, and illuminated with ultraviolet light of a certain wavelength. This prompts the molecular switches to crosslink, or bind one to another.

The result? When the light is switched off and the external stress released, the crosslinks remain, maintaining an elongated structure.

Exposure to light of another wavelength cleaves the new bonds, allowing the material to spring back to its original shape.

The team notes that in addition to elongated films, a variety of other temporary shapes can be produced.

For example, a spiral can be created by exposing only one side of the stretched sample to light. The result is the formation of two layers.

So "while the deformation is well-fixed for [the irradiated] layer, the other keeps its elasticity. As a result, one contracts much more than the other when the external stress is released, forming an arch or corkscrew spiral shape," the authors write.

The team has also shown that the temporary shapes are "very stable for long times even when heated to 50 degrees C."

"In our Nature paper, the basic principle of photo-induced shape-memory polymers is explained. We are currently developing medical and industrial applications using their photosensitivity," Lendlein said.

The work was funded in part by a BioFuture Award from the Bundesministerium f�r Bildung und Forschung, Germany, and a fellowship from the Alexander von Humboldt Foundation.

Community
Email This Article
Comment On This Article

Related Links
MIT
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NGC Chosen To Proceed With Developing Solid-State Laser Technology For Military Applications
Redondo Beach CA (SPX) Jan 09, 2006
Northrop Grumman Corporation has been selected to develop "military-grade," solid-state laser technology that is expected to pave the way for the U.S. military to incorporate high-energy laser systems across all services, including ships, manned and unmanned aircraft, and ground vehicles.







  • Scientists Discover Better Way To Generate Power From Thermal Sources
  • GM Delivers First Fuel Cell Truck To US Army
  • China, US Sign Deal For Cooperation In Clean Technologies
  • Japanese Companies Take Lead In Sustainable Development

  • Study Uncovers Bacteria's Worst Enemy
  • India Signs Nuke Safety Treaty
  • China Plans To Build 40 New Nuclear Reactors In Next 15 Years
  • New Alloy Verified For Safer Disposal Of Spent Nuclear Energy Fuel





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Boeing Procurement Scandal Spawns 48 Air Force Reviews: General
  • Who Will Win: Boeing Or Airbus?
  • Airbus, Space Activities Lift EADS 2004 Profit By 60 Percent
  • Fossett Commits To Final Dash To Kansas

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement