Energy News  
Smart Concrete Could Improve Levees

UB scientist Deborah Chung holds a sample of smart concrete. The concrete's electrical properties make it an ideal sensor of stress, weight and vibration.

Buffalo NY (SPX) Sep 27, 2005
The failure of levees in the wake of Hurricane Katrina points out the need for new technologies to strengthen levees and monitor their reliability, according to Deborah D. L. Chung, Ph.D., a University at Buffalo materials scientist and inventor of "smart concrete."

"The technology used to build levees is really very primitive - sometimes it involves just the piling of dirt. Surely there's a lot of room to use higher technologies than that," says Chung, Niagara Mohawk Professor of Materials Research and director of the Composite Materials Research Laboratory in the UB School of Engineering and Applied Sciences.

Chung's smart concrete, patented in 1998, may be one such technology whose time has come for commercial use - not only in the construction of levees, but for a range of disaster and homeland security applications.

With smart concrete, short carbon fibers are added to the conventional concrete mixture. This modification gives the concrete the ability to detect stress and tiny deformations in the concrete. In the presence of structural flaws - within a levee made of smart concrete, for example - the concrete's electrical resistance increases. This change can be detected by electrical probes placed on the outside of structures.

"You could use a meter to continuously monitor stress and deformation within levees made of smart concrete," Chung explains. "When deformations in the levee deviate from an acceptable baseline, an alarm could be triggered."

Similarly, the electrical properties of smart concrete could be used to detect underground stress that builds prior to an earthquake, to monitor building occupancy for intruders or for stragglers during an evacuation, and to monitor traffic flow in an emergency or around U.S. borders, Chung says.

Chung, who also has studied the use of continuous carbon fibers in the form of composites, suggests that some levees could be encased in a shell composed of such composites, which are similar to the material used to form the bodies of jet aircraft.

"If you use that as the outer shell of a levee, you could make use of the carbon fiber's electrical conductivity to monitor fiber breakage," she says. "So in addition to serving as levee reinforcement, the shell also serves as a sensor of damage."

According to Chung, use of smart concrete would increase construction costs by 30 percent, which is a main reason industry has not adopted its use, she says. Of course, reconstruction costs after a disaster can run much higher, she points out.

"People might say they like sensing, but in real life do they really want their bridge or their highway to be smart," Chung asks. "When it comes to real construction projects, all they really care about is mechanical behavior, and every penny counts in the bidding process."

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NGC Chosen To Proceed With Developing Solid-State Laser Technology For Military Applications
Redondo Beach CA (SPX) Jan 09, 2006
Northrop Grumman Corporation has been selected to develop "military-grade," solid-state laser technology that is expected to pave the way for the U.S. military to incorporate high-energy laser systems across all services, including ships, manned and unmanned aircraft, and ground vehicles.







  • Investment In Energy R&D Declines Despite Soaring Prices, Supply Problems
  • Monster Storms Lay Bare US Refinery Crisis
  • Northrop Grumman Teams With Protonex To Develop Portable Power System
  • Prices fall As US Oil Industry Weathers Storm

  • Russia Ready To Join US-Led Uranium Fuel Bank
  • Key Signatories Urged To Ratify Nuclear Test Ban Treaty
  • Scorpene Deal Will Ensure Nuke Supply
  • Russia To Build Nuke Waste Facility

  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source



  • Crop Scientists Improve "Supergrain" For Impoverished Farmers
  • Gourmet Space Dinner On Greenland Icecap
  • Sophisticated Forecasts Help India's Farmers Survive Patchy Monsoon
  • Analysis: N.Korea No Longer Wants Food Aid?

  • Solar Cars Driving Towards A Hydrogen Future
  • Mapflow And DTO Announce Dublin Satellite Tolling Study
  • German Car Makers Scramble To Jump On Hybrid Engine Bandwagon
  • Could Katrina Kill The SUV?

  • China's Top Airplane Maker Aims To Become Major Global Player
  • China's Aviation Boom Drives World Market
  • Boeing Projects $213 Billion Market For New Airplanes In China
  • Chinese Airline Signs Deal To Buy Eight Boeing 787 Aircraft

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement