![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
London - Mar 24, 2004 Developments in snap-shot MRI (magnetic resonance imaging), organic semiconductor technology, high temperature superconductivity, and progress towards quantum computers are some of the topics being presented at a major conference organised by the Institute of Physics next month. The four-day conference, CMMP 2004, will take place from Sunday 4th to Wednesday 7th April 2004 at the University of Warwick. Silicon microchips touch our lives in many ways � they power personal computers and enable high-speed medical imaging. Inside silicon chips, electrons move along microscopic wires that form complex electrical circuits. At this conference, on Tuesday 6th April, Professor Jakob Reichel from the University of Munich will describe a revolutionary new type of microchip in which entire atoms, rather than just electrons, move around circuits. In these "atom chips", thousands of atoms hover in a cloud above the surface of the chip, and move along air wires produced by tiny magnetic fields � like microscopic magnetic levitation trains floating above a track. The atom clouds themselves are very special � they are so cold that all of the atoms merge into one "superatom", known as a Bose-Einstein Condensate, which behaves like a wave and exhibits bizarre quantum behaviour. Bose-Einstein Condensates have just entered the Guinness Book of Records as the coldest ever place � within a few billionths of a degree of the lowest possible temperature, absolute zero. Using atom chips to move and manipulate Bose-Einstein Condensates could enable the development of "quantum computers", which would exploit unique features of quantum mechanics, and, for certain tasks, be vastly more powerful than the conventional electronic computers available today. There will be twenty-two symposia within the conference including 'Nanomagnetism and Spintronics', 'Quantum Fluids and Solids', 'Semiconductor Optics and Photonics', 'Applied Superconductivity' and 'Bose-Einstein Condensates'. Community Email This Article Comment On This Article Related Links Institute of Physics SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Space Technology News - Applications and Research
![]() ![]() A team comprised of three leading US aerospace and defense contractors has demonstrated an innovative technological use of active electronically scanned array (AESA) radars for high-bandwidth communications. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |