Energy News  
Sensor Technologies Enhance Factory Operations

illustration only

Palo Alto - Mar 17, 2004
A new-age simulation engine that remotely controls factory processes in real time using data from sensors is likely to be the next big thing in assembly line operation management. The engine's unique visualization tool helps cut out interferences from human errors, inadequate materials, or logistic planning gone awry by virtually representing the manufacturing facility for itemized monitoring.

The sensors read the changes on the factory floor and convert it into data for a configuration event analyzer that converts it into 3-D animation events. To facilitate system improvements, the engine's Singapore-based inventors have even built a new visualization device, which enables even novice users to operate the machine.

For the system to be fully effective, discrepancies in the visualizers' predictions and the data relayed by the engine will have to be sorted out. Interaction techniques are vital because the modifications made on the simulated model will be carried out on the actual factory floor.

"Scientists are working on new techniques that will display confirmed, predicted, and corrected states in a single cyber model," states Technical Insights Analyst Anand Subramanian.

Meanwhile in Europe, a new class of sensors called contactless capacitive angular-position sensors with accuracy of up to 0.03 degrees variation over a full-circle range has given industrial precision applications a shot in the arm. These sensors can detect angular positions for any application and even measure linear positions by combining linear movement and angular sensing.

With capacitive sensors using superior dielectric rotors, researchers are considering them as an alternative to the more prevalent optical encoders in select applications. The easy design of the electronic interface also permits uncomplicated production, as it can be assembled using off-the-shelf components.

While difficult angles are being taken care of, scientists in France are developing systems for accurate measurement of flat surfaces' dimensions. The success of optical techniques such as holographic interferometry and shearography is limited to small objects. For larger ones, a relatively inexpensive 3D, non-contact system with uniformly high resolution is being created.

The sensor system operates on a customized, motorized gantry, where every axis is controlled using a separate cable. The optics comprises a laser diode with anamorphic beam-conditioning optics and a charge-coupled device chip to capture the beams.

However, this protracted setup enables only isolated measurements. A fringe projection-based all-optical configuration that can profile objects of any size is in the pipeline.

High-resolution fiber optic sensors are also being used as displacement sensors for sub-micron measurement, especially as touch probes inside grooves. Since traditional shank-based systems involve pretravel that can increase unreliability, scientists in Japan are considering using fiber optic sensors for its greater thermal stability, resolution, and directionality.

"The system, consisting of three displacement sensors and a tip ball that is the only source of mass, provides faster measurements because of its higher frequency," notes Subramanian.

Apart from use in coordinate measuring machines for dimensional metrology, 3D control, and manufacturing processes, the system finds application in profile and orientation measurement and depth mapping.

These advances in sensor technology are expected to supplement developments in micro-fabrication techniques and factory processes, creating more accurate and reliable operations and devices.

Community
Email This Article
Comment On This Article

Related Links
Frost & Sullivan
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Industry Team Achieve New Communications Technology With AESA Radars
Baltimore MD (SPX) Jan 12, 2006
A team comprised of three leading US aerospace and defense contractors has demonstrated an innovative technological use of active electronically scanned array (AESA) radars for high-bandwidth communications.







  • Scientists Call For Less Destructive Remediation At Doe Sites
  • INEEL Designing Prototype System For Yucca Mountain Repository
  • EU Offers Armenia 100 Million Euros To Shut Down Nuclear Plant
  • Hybrids On The High Seas

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Sonic Boom Modification May Lead To New Era
  • Hewitt Pledges Support For Aerospace Industry
  • National Consortium Picks Aviation Technology Test Site
  • Wright Flyer Takes To The Sky In Las Vegas

  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems
  • Boeing To Build Space-borne Power Generator

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement