Energy News  
Selective Coatings Create Biological Sensors From Carbon Nanotubes

Miniscule monitor: Nanotubes that act as chemical sensors have been developed that when loaded into tiny glass tubes, shown here on a fingertip, can track blood sugar and other biological changes in the body. Credit: Michael S. Strano.

Champaign IL (SPX) Dec 13, 2004
Protein-encapsulated single-walled carbon nanotubes that alter their fluorescence in the presence of specific biomolecules could generate many new types of implantable biological sensors, say researchers from the University of Illinois at Urbana-Champaign who developed the encapsulation technique.

In a paper accepted for publication in the journal Nature Materials, and posted on its Web site, the researchers showed the viability of their technique by creating a near-infrared nanoscale sensor that detects glucose.

The sensor could be inserted into tissue, excited with a laser pointer, and provide real-time, continuous monitoring of blood glucose level.

"Carbon nanotubes naturally fluoresce in the near-infrared region of the spectrum where human tissue and biological fluids are particularly transparent," said Michael Strano, a professor of chemical and biomolecular engineering at Illinois.

"We have developed molecular sheaths around the nanotube that respond to a particular chemical and modulate the nanotube's optical properties."

To make their biological sensors, Strano, postdoctoral research associate Seunghyun Baik, and graduate students Paul Barone and Daniel Heller begin by assembling a monolayer of the enzyme glucose oxidase on the surface of nanotubes suspended in water.

The enzyme not only prevents the nanotubes from sticking together into useless clumps, it also acts as a selective site where glucose will bind and generate hydrogen peroxide.

Next, the researchers functionalize the surface with ferricyanide, an ion that is sensitive to hydrogen peroxide. The ion attaches to the surface through the porous monolayer.

When present, hydrogen peroxide will form a complex with the ion, which changes the electron density of the nanotube and consequently its optical properties.

"When glucose encounters the enzyme, hydrogen peroxide is produced, which quickly reacts with the ferricyanide to modulate the electronic structure and optical characteristics of the nanotube," Strano said. "The more glucose that is present, the brighter the nanotube will fluoresce."

To prove the practicality of their technique, Strano's team loaded some of the sensors into a porous capillary that confined the nanotubes but allowed glucose to enter. When inserted into human tissue, the fluorescent emission of the sensor corresponded to the local glucose concentration.

"The advantage of the near-infrared signaling to and from such a capillary device is its potential for implantation into thick tissue or whole blood media, where the signal may penetrate up to several centimeters," Strano said.

"And, because nanotubes won't degrade like organic molecules that fluoresce, these nanoparticle optical sensors would be suitable for long-term monitoring applications."

One important aspect of the new surface chemistry, Strano said, is that no bonds are broken on the nanotube. "This allows us to shuttle electrons in and out without damaging the nanotube itself."

Another important aspect is that the technique can be extended to many other chemical systems. "We've shown that it is possible to tailor the surface to make it selective to a particular analyte," Strano said. "There are whole classes of analytes that can be detected in this manner."

Community
Email This Article
Comment On This Article

Related Links
University of Illinois at Urbana-Champaign
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Prof Develops Cancer Nanobomb
Newark DE (SPX) Oct 14, 2005
University of Delaware researchers are opening a new front in the war on cancer, bringing to bear new nanotechnologies for cancer detection and treatment and introducing a unique nanobomb that can literally blow up breast cancer tumors.







  • Electric Energy Security, Savings Goals Of Power Electronics Research
  • Opportunities For Local Power Storage and Alternative Energy Sources Today
  • Wind Farming, Inc. To Build Two 100-Megawatt Wind/Hydrogen Sites in China
  • Green Mountain Introduces New Price Point For "Pollution Free" Power

  • Brazil To Start Enriching Uranium Next Month: Official
  • Top Scientists Lash Australian States Over N-Waste 'Hysteria'
  • Nuclear Waste Dumps Will Become The Pyramids Of Our Age
  • France Gambles On Nuclear Energy Market





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • NASA's Famed B-52B "Mothership" Aircraft To Retire
  • EADS Faces Big Decision On Boeing Rival, Grapples With Internal Friction
  • Raytheon To Continue NASA Contract For Airspace Concepts Evaluation System
  • FAA And Raytheon To Modify FAA Contract To Provide Full LPV Performance For The WAAS

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement