Energy News  
ENERGY TECH
Scientists tap unused energy source to power smart sensor networks
by Staff Writers
University Park PA (SPX) Apr 06, 2020

A team of scientists has developed a new mechanism to harvest stray magnetic fields all around us and convert the energy into useful, usable electricity.

The electricity that lights our homes and powers our appliances also creates small magnetic fields that are present all around us. Scientists have developed a new mechanism capable of harvesting this wasted magnetic field energy and converting it into enough electricity to power next-generation sensor networks for smart buildings and factories.

"Just like sunlight is a free source of energy we try to harvest, so are magnetic fields," said Shashank Priya, professor of materials science and engineering and associate vice president for research at Penn State. "We have this ubiquitous energy present in our homes, office spaces, work spaces and cars. It's everywhere, and we have an opportunity to harvest this background noise and convert it to useable electricity."

A team led by Penn State scientists developed a device that provides 400 percent higher power output compared to other state-of-the-art technology when working with low-level magnetic fields, like those found in our homes and buildings.

The technology has implications for the design of smart buildings, which will require self-powered wireless sensor networks to do things like monitor energy and operational patterns and remotely control systems, the scientists said.

"In buildings, it's known that if you automate a lot of functions, you could actually improve the energy efficiency very significantly," Priya said. "Buildings are one of the largest consumers of electricity in the United States. So even a few percent drop in energy consumption could represent or translate into megawatts of savings. Sensors are what will make it possible to automate these controls, and this technology is a realistic way to power those sensors."

Researchers designed paper-thin devices, about 1.5 inches long, that can be placed on or near appliances, lights, or power cords where the magnetic fields are strongest. These fields quickly dissipate away from the source of flowing electric current, the scientists said.

When placed 4 inches from a space heater, the device produced enough electricity to power 180 LED arrays, and at 8 inches, enough to power a digital alarm clock. The scientists reported the findings in the journal Energy and Environmental Science.

"These results provide significant advancements toward sustainable power for integrated sensors and wireless communication systems," said Min Gyu Kang, an assistant research professor at Penn State and co-lead author on the study.

The scientists used a composite structure, layering two different materials together. One of these materials is magnetostrictive, which converts a magnetic field into stress, and the other is piezoelectric, which converts stress, or vibrations, into an electric field. The combination allows the device to turn a magnetic field into an electric current.

The device has a beam-like structure with one end clamped and the other free to vibrate in response to an applied magnetic field. A magnet mounted at the free end of the beam amplifies the movement and contributes toward a higher production of electricity, the scientists said.

"The beauty of this research is it uses known materials, but designs the architecture for basically maximizing the conversion of the magnetic field into electricity," Priya said. "This allows for achieving high power density under low amplitude magnetic fields."

Rammohan Sri Ramdas, an assistant research professor at Penn State, participated in the research.

Also contributing were Hyeon Lee and Prashant Kumar, research assistants at Virginia Tech, and Mohan Sanghadasa, senior research scientist at the Aviation and Missile Center, U.S. Army Combat Capabilities Development Command.

Some of the team members in this study were funded through the Office of Naval Research and the others through National Science Foundation.

Research paper


Related Links
Penn State
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Converting waste heat into electricity to power billions of sensors
Osaka, Japan (SPX) Mar 25, 2020
Interconnected healthcare and many other future applications will require internet connectivity between billions of sensors. The devices that will enable these applications must be small, flexible, reliable, and environmentally sustainable. Researchers must develop new tools beyond batteries to power these devices, because continually replacing batteries is difficult and expensive. In a study published in Advanced Materials Technologies, researchers from Osaka University have revealed how the ther ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Smaller scale solutions needed for rapid progress towards emissions targets

Brussels not dropping Green Deal despite virus

Czech PM urges EU to shelve Green Deal amid virus

The impact of energy development on bird populations

ENERGY TECH
New explanation for sudden heat collapses in plasmas can help create fusion energy

An all-organic proton battery energized for sustainable energy storage

Converting waste heat into electricity to power billions of sensors

A landmark plan for realizing fusion energy and advancing plasma science

ENERGY TECH
Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

ENERGY TECH
Trina Solar announces mass production of 500W+ Duomax V and Tallmax V modules

Bristol team develops photosynthetic proteins for expanded solar energy conversion

GAF Energy introduces new super high-efficiency panel for their roof-integrated solar system

Nature-inspired green energy technology clears important development hurdle

ENERGY TECH
Framatome opens new research and operations center and expands Intercontrole in Cadarache, France

Protests as Moscow moves to build road on radioactive dump

Atomic fingerprint identifies emission sources of uranium

US military plans portable mini nuclear power plants

ENERGY TECH
A novel biofuel system for hydrogen production from biomass

Recovering phosphorus from corn ethanol production can help reduce groundwater pollution

Deceptively simple process could boost plastics recycling

Scientists call for more sustainable palm oil practices

ENERGY TECH
Saudi oil industry at risk as American, European refiners refusing Riyadh's crude

Venezuelan army chiefs back Maduro after US indictment

As prices fall, what are the threats to oil giant Iraq?

Satellites map the global flow of oil

ENERGY TECH
Brazil, US 'rolling back' on climate: UN rights chief

The right dose of geoengineering could reduce climate change risks

Stickleback study shows epigenetic changes key to climate change adaptation

Indian Ocean phenomenon spells climate trouble for Australia









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.