Energy News  
ENERGY TECH
Scientists found a way to increase the capacity of energy sources for portable electronics
by Staff Writers
Moscow, Russia (SPX) Jun 03, 2019

file illustration only

Scientists from Skoltech, Moscow State University (MSU) and Moscow Institute of Physics and Technology (MIPT) have proposed a new approach to replacing carbon atoms with nitrogen atoms in the supercapacitor's crystal lattice and developed a novel capacity enhancement method based on carbon lattice modification with the aid of plasma. Their findings can help create the next generation of power sources for portable electronics. The results of their study were published in Scientific Reports.

As portable devices evolve, the demand for new types of energy sources grows. Scientists keep looking for an effective way to improve the performances of electrochemical energy sources. A chemical source of current, the supercapacitor is distinguished by high charge and discharge rates and a higher energy storage capacity per unit mass or volume as compared to a battery.

It is customary to use porous materials, such as carbon or porous metals, for supercapacitors, however metals make the source much heavier. There are several ways of increasing the capacity of electrochemical energy sources while keeping their weight unchanged, for example, by using other lighter elements or incorporating the atoms of another element into the crystal lattice (doping.) The second method is believed to offer better prospects, as it allows easy atom incorporation at the carbon structure synthesis stage.

Nitrogen is one of the elements considered for doping. Nitrogen is involved in redox reactions, which leads to an additional increase in capacity. Although scientists have long been aware of the doping method, the effect of nitrogen on the electrochemical characteristics is still poorly understood.

A group of scientists led by Skoltech Senior Researcher Dr. Stanislav Evlashin demonstrated a simple way of increasing the supercapacitors' electrochemical performance. Their approach provides a better insight into the nitrogen incorporation process. The researchers performed the experiments using Carbon Nanowalls made of vertically oriented graphene sheets, in which they replaced some of the carbon with nitrogen using carbon structure treatment by plasma. The outcomes of the study are an important step towards creating new energy sources.

"In this study, we used a plasma post-treatment approach in order to improve the capacity of the electrodes," explains Dr. Evlashin.

"We used carbon structures with a high specific surface area as a material for doping in the nitrogen plasma and replaced a part of carbon atoms with nitrogen atoms to enhance the electrochemical capacity of the energy source. This approach can be applied to modify any carbon structure. The obtained samples were tested using various methods. The experimental results displayed a six-fold increase in electrochemical capacity and excellent cycling stability. We also performed DFT simulation of the nitrogen incorporation process that sheds some light on the complex incorporation mechanisms."

Research paper


Related Links
Skolkovo Institute of Science and Technology (Skoltech)
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Army discovery opens path to safer batteries
Adelphi MD (SPX) May 13, 2019
Soldiers carrying 15-25 pounds of batteries could carry batteries a fraction of the weight but with the same energy and improved safety, a new study shows. In the latest issue of the journal Nature, researchers at the U.S. Army Combat Capabilities Development Command's Army Research Laboratory, the Army's corporate research laboratory known as ARL, and the University of Maryland demonstrated a transformative step in battery technology with the identification of a new cathode chemistry. Completely ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Florida air conditioning pioneer first dismissed as a crank

Speed bumps on German road to lower emissions

World nations failing the poorest on energy goals: study

'Step-change' in energy investment needed to meet climate goals: IEA

ENERGY TECH
Wearable cooling and heating patch could serve as personal thermostat and save energy

Scientists revisit the cold case of cold fusion

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

Researchers set new mark for highest-temperature superconductor

ENERGY TECH
Can sound protect eagles from wind turbine collisions?

UK hits historic coal-free landmark

BayWa r.e. sells its first Australian wind farms to Epic Energy

The complicated future of offshore wind power in the US

ENERGY TECH
Solar cell defect mystery solved after decades of global effort

First stand-alone solar-powered poultry house

Renewables doesn't equal zero-carbon energy, and the difference is growing

Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals

ENERGY TECH
World's second EPR nuclear reactor starts work in China

GE Hitachi begins vendor review of its BWRX-300 SMR with Canada's nuclear commission

Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy

Iran to increase uranium, heavy water production: official

ENERGY TECH
Table scraps can be used to reduce reliance on fossil fuels

Where there's waste there's fertilizer

When biodegradable plastic isn't

Electrode's 'hot edges' convert CO2 gas into fuels and chemicals

ENERGY TECH
Aircraft from Lincoln CSG, B-52H conduct joint exercises in Arabian Sea

ExxonMobil staff to return to work in Iraq: ministry

US-UAE defense agreement comes into force

Fiery new Papua New Guinea PM questions vast Exxon, Total gas deal

ENERGY TECH
UK-led mission to improve climate change forecasts added to ESA mission

Merkel govt vows climate action as voters turn up heat

Warming Arctic to blame for increase in extreme weather

Merkel team talks climate as voters turn up heat









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.