Energy News  
ENERGY TECH
Scientists discover how a pinch of salt can improve battery performance
by Staff Writers
London, UK (SPX) May 15, 2018

When the MOF is carbonised it transforms into a nano-diatom, much like a dragon egg turns into a fire-born dragon after fire treatment in Game of Thrones.

Researchers at Queen Mary University of London, University of Cambridge and Max Planck Institute for Solid State Research have discovered how a pinch of salt can be used to drastically improve the performance of batteries.

They found that adding salt to the inside of a supermolecular sponge and then baking it at a high temperature transformed the sponge into a carbon-based structure.

Surprisingly, the salt reacted with the sponge in special ways and turned it from a homogeneous mass to an intricate structure with fibres, struts, pillars and webs. This kind of 3D hierarchically organised carbon structure has proven very difficult to grow in a laboratory but is crucial in providing unimpeded ion transport to active sites in a battery.

In the study, published in JACS (Journal of the American Chemical Society), the researchers demonstrate that the use of these materials in Lithium-ion batteries not only enables the batteries to be charged-up rapidly, but also at one of the highest capacities.

Due to their intricate architecture the researchers have termed these structures 'nano-diatoms', and believe they could also be used in energy storage and conversion, for example as electrocatalysts for hydrogen production.

Lead author and project leader Dr Stoyan Smoukov, from Queen Mary's School of Engineering and Materials Science, said: "This metamorphosis only happens when we heat the compounds to 800 degrees centigrade and was as unexpected as hatching fire-born dragons instead of getting baked eggs in the Game of Thrones. It is very satisfying that after the initial surprise, we have also discovered how to control the transformations with chemical composition."

Carbon, including graphene and carbon nanotubes, is a family of the most versatile materials in nature, used in catalysis and electronics because of its conductivity and chemical and thermal stability.

3D carbon-based nanostructures with multiple levels of hierarchy not only can retain useful physical properties like good electronic conductivity but also can have unique properties. These 3D carbon-based materials can exhibit improved wettability (to facilitate ion infiltration), high strength per unit weight, and directional pathways for fluid transport.

It is, however, very challenging to make carbon-based multilevel hierarchical structures, particularly via simple chemical routes, yet these structures would be useful if such materials are to be made in large quantities for industry.

The supermolecular sponge used in the study is also known as a metal organic framework (MOF) material. These MOFs are attractive, molecularly designed porous materials with many promising applications such as gas storage and separation. The retention of high surface area after carbonisation - or baking at a high temperature - makes them interesting as electrode materials for batteries.

However, so far carbonising MOFs has preserved the structure of the initial particles like that of a dense carbon foam. By adding salts to these MOF sponges and carbonising them, the researchers discovered a series of carbon-based materials with multiple levels of hierarchy.

Dr R. Vasant Kumar, a collaborator on the study from University of Cambridge, commented: "This work pushes the use of the MOFs to a new level. The strategy for structuring carbon materials could be important not only in energy storage but also in energy conversion, and sensing."

Lead author, Tiesheng Wang, from University of Cambridge, said: "Potentially, we could design nano-diatoms with desired structures and active sites incorporated in the carbon as there are thousands of MOFs and salts for us to select."

Research paper


Related Links
Queen Mary University of London
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Microwaved plastic increases lithium-sulfur battery lifespan
West Lafayette IN (SPX) May 15, 2018
Purdue engineers have figured out a way to tackle plastic landfills while also improving batteries - by putting ink-free plastic soaked in sulfur-containing solvent into a microwave, and then into batteries as a carbon scaffold. Lithium-sulfur batteries have been hailed as the next generation of batteries to replace the current lithium ion variety. Lithium-sulfur batteries are cheaper and more energy-dense than lithium ions, which would be important characteristics in everything from electric vehi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
New phase of globalization could undermine efforts to reduce CO2 emissions

Carbon taxes can be both fair and effective, study shows

Trump rolls back Obama-era fuel efficiency rules

Lights out for world landmarks in nod to nature

ENERGY TECH
Microwaved plastic increases lithium-sulfur battery lifespan

World's fastest water heater

Heat and sound wave interactions in solids could run engines, refrigerators

Revealing the mysteries of superconductors

ENERGY TECH
German utility E.ON sees renewable sector growth

Germany's E.ON wants even bigger wind footprint

US renewables firm takes Poland to court over U-turn on windmills

New control strategy helps reap maximum power from wind farms

ENERGY TECH
Renewable Energy Jobs Reach 10.3 Million Worldwide in 2017

California becomes first US state to require solar on new homes

meeco deploys solar powered electric bikes for Safari camps in Kenya

Asian markets have renewable energy edge

ENERGY TECH
Demonstration proves nuclear fission system can provide space exploration power

Framatome and Vattenfall sign contracts for the delivery of fuel assembly reloads

Balancing nuclear and renewable energy

Framatome receives two patent awards for nuclear innovations

ENERGY TECH
Toward organic fuel cells with forest fuels

Solar powered sea slugs shed light on search for perpetual green energy

Novel approach for photosynthetic production of carbon neutral biofuel from green algae

Energy recovery of urban waste

ENERGY TECH
US Navy sees 'period of uncertainty' in Gulf

Citing geopolitical risk, U.S. raises oil price forecast

Russia's Rosneft reaps rewards from higher oil prices

Russia commits to JCPOA following U.S. pullout

ENERGY TECH
In ancient rocks, scientists see a climate cycle working across deep time

Earth's orbital changes have influenced climate, life for at least 215M years

Atmospheric CO2 levels in April hit highest average ever recorded

Total EU carbon emissions rise 1.8 percent last year: Eurostat









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.