Energy News  
ENERGY TECH
Scientists discover a molecular motor has a 'gear' for directional switching
by Staff Writers
Corvallis OR (SPX) Jan 06, 2017


The motor protein KlpA moves in one direction on a single cytoskeleton track and switches to the opposite direction between a pair of cytoskeleton tracks. Image courtesy Kuo-Fu Tseng and Oregon State University.

A new study offers a new understanding of the complex cellular machinery that animal and fungi cells use to ensure normal cell division, and scientists say it could one day lead to new treatment approaches for certain types of cancers.

The research revealed a totally unexpected behavior about a "motor" protein that functions as chromosomes are segregated during cell division. The findings were published in Nature Communications.

The work was led by Weihong Qiu, an assistant professor of physics in the College of Science at Oregon State University, in collaboration with researchers from Henan University in China and the Uniformed Services University of the Health Sciences in Maryland.

Motor proteins are tiny molecular machines that convert chemical energy into mechanical work. They are the miniature "vehicles" of a cell, and move on a network of tracks commonly referred to as the cytoskeleton.

They shuttle cellular cargos between locations and generate forces to position chromosomes. But in spite of intensive research efforts over many years, mechanisms underlying the actions of many motor proteins are still unclear.

In this study, researchers focused on a particular motor protein, called KlpA, and used a high-sensitivity light microscopy method to directly follow the movement of individual KlpA molecules on the cytoskeleton track. They discovered that KlpA is able to move in opposite directions - an unusual finding. KlpA-like motor proteins are thought to be exclusively one-way vehicles.

The researchers also discovered that KlpA contains a gear-like component that enables it to switch direction of movement. This allows it to localize to different regions inside the cell so it can help ensure that chromosomes are properly divided for normal cell division.

"In the past, KlpA-like motor proteins were thought to be largely redundant, and as a result they haven't been studied very much," Qiu said.

"It's becoming clear that KlpA-like motors in humans are crucial to cancer cell proliferation and survival. Our results help better understand other KlpA-like motor proteins including the ones from humans, which could eventually lead to novel approaches to cancer treatment."

Qiu and colleagues say they are excited about their future research, which may uncover the design principle at the atomic level that allows KlpA to move in opposite directions. And there may be other applications.

"KlpA is a fascinating motor protein because it is the first of its kind to demonstrate bidirectional movement," Qiu said.

"It provides a golden opportunity for us to learn from Mother Nature the rules that we can use to design motor protein-based transport devices. Hopefully in the near future, we could engineer motor protein-based robotics for drug delivery in a more precise and controllable manner."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oregon State University
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Rolling out an e-sticker revolution
Thuwal, Saudi Arabia (SPX) Jan 04, 2017
The healthcare industry forecasts that our wellbeing in the future will be monitored by wearable wirelessly networked sensors. Manufacturing such devices could become much easier with decal electronics. A KAUST-developed process prints these high-performance silicon-based computers on to soft, sticker-like surfaces that can be attached anywhere1. Fitting electronics on to the asymmetric co ... read more


ENERGY TECH
China to build $1.5 billion power line across Pakistan

MIT Energy Initiative report provides guidance for evolving electric power sector

Toward energy solutions for northern regions

Energy-hungry Asia slowing down, lender says

ENERGY TECH
Rolling out an e-sticker revolution

Bright future for energy devices

World's smallest electrical wire made from world's smallest diamonds

Lifetime of organic light-emitting diodes affected by impurities in vacuum

ENERGY TECH
The answer is blowing in the wind

French power group aims to double wind capacity

New rules for micro-grids in Alberta

Offshore wind makes U.S. debut

ENERGY TECH
Stability challenge in perovskite solar cell technology

First movie of energy transfer in photosynthesis solves decades-old debate

Artificial leaf goes more efficient for hydrogen generation

New approach captures the energy of slow motion

ENERGY TECH
AREVA NP supplies Safety Instrumentation and Control System for Generation 3 Reactor

Battling energy crisis, Pakistan turns on fourth nuclear plant

Report finds additional radioactive materials in gas-well drill cuttings

Chemistry research breakthrough that could improve nuclear waste recycling technologies

ENERGY TECH
Potential biofuel crops in Hawaii may successfully sequester carbon in soil

Biomass operations aren't currently feasible in rural communities

Molecular Velcro boosts microalgae's potential in biofuel, industrial applications

Ultrafast lasers reveal light-harvesting secrets of photosynthetic algae

ENERGY TECH
Dozens of companies land Nigerian crude oil contracts

Oil prices move higher with more OPEC commitments

Another North Sea production milestone

Schlumberger continues acquisition trends

ENERGY TECH
Tillerson called to testify on climate issues

Seizing environmental opportunities under a Trump presidency

Climate report says 2016 on pace to be hottest year yet

Glee to gloom: Climate and the 'Trump effect'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.