Energy News  
ENERGY TECH
Scientists confirm century-old speculation on the chemistry of a high-performance battery
by Staff Writers
Berkeley CA (SPX) Mar 02, 2018

illustration only

Scientists have discovered a novel chemical state of the element manganese. This chemical state, first proposed about 90 years ago, enables a high-performance, low-cost sodium-ion battery that could quickly and efficiently store and distribute energy produced by solar panels and wind turbines across the electrical grid.

This direct proof of a previously unconfirmed charge state in a manganese-containing battery component could inspire new avenues of exploration for battery innovations.

X-ray experiments at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) were key in the discovery. The study results were published Feb. 28 in the journal Nature Communications.

Scientists at Berkeley Lab and New York University participated in the study, which was led by researchers at Natron Energy, formerly Alveo Energy, a Palo Alto, California-based battery technology company.

The battery that Natron Energy supplied for the study features an unconventional design for an anode, which is one of its two electrodes. Compared with the relatively mature designs of anodes used in lithium-ion batteries, anodes for sodium-ion batteries remain an active focus of R and D.

The anode featured in this latest study is made up of a blend of elements - including manganese, carbon and nitrogen - that is chemically similar to the formula of the iron-containing paint pigment known as Prussian blue.

"Typically, in lithium-ion and sodium-ion batteries, the anode is more often carbon-based," said Wanli Yang a staff scientist at Berkeley Lab's Advanced Light Source, the source of X-rays that were used in the battery experiments.

But in this case, both of the battery's electrodes utilize the same type of materials based on elements known as "transition metals" that are useful in chemistry because they can exhibit various charged states. The other electrode, called a cathode, contains copper, nitrogen, carbon, and iron.

"The very interesting part here is that both electrodes are based on the chemistry of transition metals in the same type of materials," he added, with iron in the cathode and a special manganese chemistry in the anode.

"One of the direct benefits of utilizing such materials for both electrodes in the battery is that neither of the two electrodes fundamentally limits the power capability, cycle life, or cost of the device," said Colin Wessells, CEO at Natron Energy. The battery outperforms the Department of Energy's cycle-life and price targets for grid-scale energy storage, as the researchers report in their latest study.

Wessells noted that the battery is very stable, its materials are abundant, its overall cost is competitive with conventional lead-acid batteries, and it has a lesser environmental footprint than conventional batteries.

The battery has been shown to deliver up to 90 percent of its total energy in a very fast, five-minute discharge, and to retain about 95 percent of its discharge capacity for 1,000 cycles. It offers an alternative to gravity-based energy storage systems for electric grid, in which water is pumped uphill and then released downhill on demand to generate electricity.

Just how the battery achieves its high performance, though, had puzzled researchers.

There was speculation, dating back to a 1928 German-language journal article, that manganese could exist in a so-called "1-plus" or "monovalent" state, which means that a manganese atom in this state loses only a single electron. This is unusual, as manganese atoms typically are known to give up two or more electrons, or no electrons, in chemical reactions, but not just one.

Such a novel chemical state would enable a voltage range that is useful for battery anodes. But there hadn't been any measurements confirming this monovalent form of manganese.

The Natron Energy researchers studied the battery materials at Berkeley Lab's Molecular Foundry, a nanoscience center, and then offered up some sample battery cells for study at the ALS.

The first round of X-ray experiments at the ALS, which used a technique called soft X-ray absorption spectroscopy, appeared to show mainly the 2-plus form of manganese.

"We only caught a hint (of another form) in the initial tests, and had to rely heavily on theory to speculate about a different state," said Andrew Wray at New York University, who performed the theoretical calculations.

Then the team turned to a newly built system at the ALS, dubbed in situ resonant inelastic X-ray scattering, or iRIXS. The technique, which provides a high-sensitivity probe of the internal chemistry of materials, showed a telltale contrast in the electrons during the battery's charge and discharge cycles.

"A very clear contrast immediately shows up with RIXS," Yang said. "We later realized that manganese 1-plus behaves very, very closely to the typical 2-plus state in other conventional spectroscopy," which is why it had been difficult to detect for so many decades.

Wray added, "The analysis of the RIXS results not only confirms the manganese 1-plus state; it also shows that the special circumstances giving rise to this state make it easier for electrons to travel in the material. This is likely why such an unusual battery electrode performs so well."

Commercial prototypes based on the battery tested at the Lab entered customer beta testing earlier this year, Wessells noted. In addition to grid applications, Natron Energy is promoting the technology for data centers' emergency power, and for heavy equipment such as electric forklifts, among other possible applications.

Yang said that the chemical puzzle solved in the latest study could inspire other R and D in new types of battery electrodes. "The operation of a battery could drive the emergence of atypical chemical states that do not exist in our conventional thinking. This basic understanding could trigger other novel designs, and open our eyes beyond our conventional wisdom" on electrode materials, he said.

"This study was like a perfect package, with combined industry, national lab, and university contributions," Yang said.

Research paper


Related Links
Lawrence Berkeley National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Scientists take step toward safer batteries by trimming lithium branches
Matsumoto, Japan (SPX) Mar 01, 2018
A collaborative team of researchers from Shinshu University in Japan have found a new way to curb some of the potential dangers posed by lithium ion batteries. The team, led by Susumu Arai, a professor of the department of materials chemistry and head of Division for Application of Carbon Materials at the Institute of Carbon Science and Technology at Shinshu University, published their results recently in Physical Chemistry Chemical Physics. These batteries, typically used in electric vehicl ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Grids from Turkmenistan, Afghanistan and Pakistan could be connected

Coal phase-out: Announcing CO2-pricing triggers divestment

State utilities called to pass U.S. tax benefits to consumers

Magnetic liquids improve energy efficiency of buildings

ENERGY TECH
Scientists take step toward safer batteries by trimming lithium branches

Charging ahead to higher energy batteries

Shedding high-power laser light on the plasma density limit

New method for waking up devices

ENERGY TECH
World's first floating wind farm put to the test

New wind farm construction starts in Italy

Ireland pushing for greener economy

China wind turbine-maker guilty of stealing US trade secrets

ENERGY TECH
Avaada Power commits bllion to Uttar Pradesh solar projects

New clean energy targets put South Australia on the world map

A new approach towards highly efficient and air-stable perovskite solar cells

Wind, solar could meet 80 percent of US demand: study

ENERGY TECH
Framatome completes purchase of Schneider Electric's instrumentation and control nuclear business

Greenpeace protesters jailed for French nuclear stunt

Austria sues over EU approval of Hungary nuclear plant

Researchers run first tests of unique system for welding highly irradiated metal alloys

ENERGY TECH
Digestive ability of ancient insects could boost biofuel development

New tool tells bioengineers when to build microbial teams

Pausing evolution makes bioproduction of chemicals affordable and efficient

How biofuels from plant fibers could combat global warming

ENERGY TECH
New funding surfaces for offshore Gambia

Schlumberger and Subsea 7 propose joint venture

Crude oil prices bounce back after supply-side jitters

Seventh oil discovery made offshore Guyana

ENERGY TECH
Extinct lakes of the American desert west

Even without the clean power plan, US can achieve Paris Agreement emissions reductions

Key to predicting climate change could be blowing in the wind, researchers find

Research identifies 'evolutionary rescue' areas for animals threatened by climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.