Energy News  
Scientists Confirm Phenomenon Of Falling Beer Bubbles

it's simply elementary physics
  • watch a QT video at Stanford

  • Stanford - Mar 16, 2004
    A new experiment by chemists from Stanford University and the University of Edinburgh has finally proven what beer lovers have long suspected: When beer is poured into a glass, the bubbles sometimes go down instead of up.

    "Bubbles are lighter than beer, so they're supposed to rise upward," said Richard N. Zare, the Marguerite Blake Wilbur Professor in Natural Sciences at Stanford. "But countless drinkers have claimed that the bubbles actually go down the side of the glass. Could they be right, or would that defy the laws of physics?"

    This frothy question reached a head in 1999 after Australian researchers announced that they had created a computer model showing that it was theoretically possible for beer bubbles to flow downward. The Australians based their simulation on the motion of bubbles in a glass of Guinness draught - a popular Irish brew that contains both nitrogen and carbon dioxide gas.

    But Zare and former Stanford postdoctoral fellow Andrew J. Alexander were skeptical of the virtual Guinness model and decided to put it to the test by analyzing several liters of the liquid brew.

    "Indeed, Andy and I first disbelieved this and wondered if the people had had maybe too much Guinness to drink," Zare recalled. "We tried our own experiments, which were fun but inconclusive. So Andy got hold of a camera that takes 750 frames a second and recorded some rather gorgeous video clips of what was happening."

    Bottoms up, bubbles down
    A careful analysis of the video confirmed the Australian team's findings: Beer bubbles can and do sink to the bottom of a glass. Why does this happen?

    "The answer turns out to be really very simple," Zare explained. "It's based on the idea of what goes up has to come down. In this case, the bubbles go up more easily in the center of the beer glass than on the sides because of drag from the walls.

    As they go up, they raise the beer, and the beer has to spill back, and it does. It runs down the sides of the glass carrying the bubbles - particularly little bubbles - with it, downward. After a while it stops, but it's really quite dramatic and it's easy to demonstrate."

    The phenomenon also occurred in other beers that did not contain nitrogen, said Alexander, now a professor at the University of Edinburgh in Scotland. "The bubbles are small enough to be pushed down by the liquid," he said. "We've shown you can do this with any liquid, really - water with a fizzing tablet in it, for example."

    Confirmation of the sinking-bubble phenomenon has relevance beyond settling barroom bets, according to the researchers.

    "There's a certain aspect of bubbles that always make you think it's kids' play and relaxation, but it's serious stuff, too," Zare said, pointing to ongoing research on fluidized beds - the mixing of solid particles with liquids and gases - which have important industrial and engineering applications.

    "It's just paying attention to the world around you and trying to figure out why things happen the way they do," Alexander added. "In that case, anyone that goes into a pub and orders a pint of Guinness is a scientist."

    Community
    Email This Article
    Comment On This Article

    Related Links
    Zarelab
    SpaceDaily
    Search SpaceDaily
    Subscribe To SpaceDaily Express
    Nuclear Space Technology at Space-Travel.com



    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


    Carina Nebula Dust Pillars Harbor Embedded Stars
    Boulder CO (SPX) May 31, 2005
    Astronomers using NASA's Spitzer Space Telescope have imaged a giant molecular cloud being shredded by howling stellar winds and searing radiation, exposing a group of towering dust pillars harboring infant stars, according to a University of Colorado at Boulder researcher.







  • Scientists Call For Less Destructive Remediation At Doe Sites
  • INEEL Designing Prototype System For Yucca Mountain Repository
  • EU Offers Armenia 100 Million Euros To Shut Down Nuclear Plant
  • Hybrids On The High Seas

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Sonic Boom Modification May Lead To New Era
  • Hewitt Pledges Support For Aerospace Industry
  • National Consortium Picks Aviation Technology Test Site
  • Wright Flyer Takes To The Sky In Las Vegas

  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems
  • Boeing To Build Space-borne Power Generator

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement