Energy News  
Sandia Develops Ultra-High-Temp Ceramics That Can Withstand 2000 C

Sandia researchers Ron Loehman, right, and Dale Zschiesche check out material that can withstand twice the amount of heat compared to a conventional piece of a shuttle tile.

Albuquerque - Oct 17, 2003
Researchers at the Department of Energy's Sandia National Laboratories have developed a new lightweight material to withstand ultra-high temperatures on hypersonic vehicles, such as the space shuttle. The ultra-high-temperature ceramics (UHTCs), created in Sandia's Advanced Materials Laboratory, can withstand up to 2000 degrees C (about 3,800 degrees F).

Ron Loehman, a senior scientist in Sandia's Ceramic Materials, said results from the first seven months of the project have exceeded his expectations.

"We plan to have demonstrated successful performance at the lab scale in another year with scale-up the next year," Loehman said.

Thermal insulation materials for sharp leading edges on hypersonic vehicles must be stable at very high temperatures (near 2000 degrees C). The materials must resist evaporation, erosion, and oxidation, and should exhibit low thermal diffusivity to limit heat transfer to support structures.

Composite materials UHTCs are composed of zirconium diboride (ZrB2) and hafnium diboride (HfB2), and composites of those ceramics with silicon carbide (SiC). These ceramics are extremely hard and have high melting temperatures (3245 degrees C for ZrB2 and 3380 degrees C for HfB2). When combined, the material forms protective, oxidation-resistant coatings, and has low vapor pressures at potential use temperatures.

"However, in their present state of development, UHTCs have exhibited poor strength and thermal shock behavior, a deficiency that has been attributed to inability to make them as fully dense ceramics with good microstructures," Loehman said.

Loehman said the initial evaluation of UHTC specimens provided by the NASA Thermal Protection Branch about a year ago suggests that the poor properties were due to agglomerates, inhomogeneities, and grain boundary impurities, all of which could be traced to errors in ceramic processing.

During the first seven months, the researchers made UHTCs in both the ZrB2 and HfB2 systems that are 100 percent dense or nearly so. They have favorable microstructures, as indicated by preliminary electron microscopic examination. In addition, the researchers have hot pressed UHTCs with a much wider range of SiC contents than ever before. Availability of a range of compositions and microstructures will give system engineers added flexibility in optimizing their designs.

Collaborations The project is part of the Sandia Thermal Protection Materials Program and represents the work of several Sandia researchers. The primary research team consists of Jill Glass, Paul Kotula, David Kuntz, and University of New Mexico doctoral student Hans-Peter Dumm.

Kuntz said his primary responsibility is to compute aeroheating, design thermal protection systems (heat shields), compute material thermal response on high-speed flight vehicles, and to develop tools to improve these capabilities.

"If a vehicle flies fast enough to get hot, we analyze it," Kuntz said. "Our tools consist of a set of computer codes that compute the flowfield around a high-speed flight vehicle, the resultant heating on the surface of the vehicle, and the subsequent temperatures and ablation of the materials which form the surface of the vehicle."

Glass works with high-temperature mechanical properties and fracture analysis, and Kotula performs microstructural and microchemical analysis on the ceramic materials.

Kotula applies the Automated eXpert Spectral Image Analysis (AXSIA) software (developed by Kotula and Michael Keenan, and recently patented and winner of a 2002 R&D 100 award) to the characterization of hafnium and zirconium diboride/silicon carbide UHTCs. Kotula looks at these materials at the micron to subnanometer length scale for grain size and phase distribution as well as impurities or contaminants that can adversely affect their mechanical properties.

Boron and carbon are difficult to analyze because they give off low-energy or soft X-rays when excited with an electron beam as in a scanning or transmission electron microscope typically used for such analyses. Instead of using X-ray analysis techniques, the research team has developed other analytical capabilities based on electron energy-loss spectrometry to determine amounts and nanometer-scale lateral distributions of the light elements in the UHTCs.

Oxygen, in particular, is an important impurity since, in combination with the silicon present in the UHTCs and other impurities, it can form glasses or other phases that typically can't take the required high-operation temperatures and would melt or crack in service, causing the material to fail.

"If enough of the wrong contaminants find their way into the process, the material will have no high-temperature strength or stability," Kotula said.

Community
Email This Article
Comment On This Article

Related Links
Sandia National Laboratories
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NGC Chosen To Proceed With Developing Solid-State Laser Technology For Military Applications
Redondo Beach CA (SPX) Jan 09, 2006
Northrop Grumman Corporation has been selected to develop "military-grade," solid-state laser technology that is expected to pave the way for the U.S. military to incorporate high-energy laser systems across all services, including ships, manned and unmanned aircraft, and ground vehicles.







  • MTI and Harris Further Develop Micro Fuel Cells for Military
  • China Bans Coal-Fire Power Plants In Major Cities
  • Dupont And NREL To Develop World's First Integrated Bio-Refinery
  • NASA Technology Reduces Some Smokestack Emissions

  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought
  • Los Alamos Lab Working On Romanian Nuke Waste Site





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Wright Flyer Takes To The Sky In Las Vegas
  • Aurora Builds Low-speed Wind Tunnel
  • Yeager To Retire From Military Flying After October Airshow
  • Boeing Signs Technology Development Agreement With JAI For Work On Sonic Cruiser

  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems
  • Boeing To Build Space-borne Power Generator
  • New High-Purity Plutonium Sources Produced At Los Alamos

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement