Energy News  
Robotic Exoskeleton Replaces Muscle Work

File image of an exoskeleton system.
by Staff Writers
Ann Arbor, MI (SPX) Feb 11, 2007
A robotic exoskeleton controlled by the wearer's own nervous system could help users regain limb function, which is encouraging news for people with partial nervous system impairment, say University of Michigan researchers. The ankle exoskeleton developed at U-M was worn by healthy subjects to measure how the device affected ankle function.

The U-M team has no plans to build a commercial exoskeleton, but their results suggest promising applications for rehabilitation and physical therapy, and a similar approach could be used by other groups who do build such technology.

"This could benefit stroke patients or patients with incomplete injuries of the spinal cord," said Daniel Ferris, associate professor in movement science at U-M. "For patients that can walk slowly, a brace like this may help them walk faster and more effectively."

Ferris and former U-M doctoral student Keith Gordon, who is now a post-doctoral fellow at the Rehabilitation Institute of Chicago, showed that the wearer of the U-M ankle exoskeleton could learn how to walk with the exoskeleton in about 30 minutes. Additionally, the wearer's nervous system retained the ability to control the exoskeleton three days later.

Electrical signals sent by the brain to our muscles tell them how to move. In people with spinal injuries or some neurological disorders, those electrical signals don't arrive full strength and are uncoordinated. In addition, patients are less able to keep track of exactly where and how their muscles move, which makes re-learning movement difficult.

Typically, robotic rehabilitative devices are worn by patients so that the limb is moved by the brace, which receives its instructions from a computer. Such devices use repetition to help force a movement pattern.

The U-M robotic exoskeleton works the opposite of these rehabilitation aids. In the U-M device, electrodes were attached to the wearer's leg and those electrical signals received from the brain were translated into movement by the exoskeleton.

"The (artificial) muscles are pneumatic. When the computer gets the electrical signal from the (wearer's) muscle, it increases the air pressure into the artificial muscle on the brace," Ferris said. "Essentially the artificial muscle contracts with the person's muscle."

Initially the wearer's gait was disrupted because the mechanical power added by the exoskeleton made the muscle stronger. However, in a relatively short time, the wearers adapted to the new strength and used their muscles less because the exoskeleton was doing more of the work. Their gait normalized after about 30 minutes.

The next step is to test the device on patients with impaired muscle function, Ferris said.

This work was supported by a grant from the National Institute of Neurological Disorders and Stroke.

The complete paper, "Learning to Walk with a Robotic Ankle Exoskeleton" is online at the Journal of Biomechanics

Community
Email This Article
Comment On This Article

Related Links
University of Michigan
All about the robots on Earth and beyond!
All about the robots on Earth and beyond!



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Robotic Arm Aids Stroke Victims
San Francisco (UPI) Feb 08, 2007
A robotic arm appears to help stroke patients regain some of the function lost in the brain attack that cost them partial use of their limbs, doctors demonstrated Wednesday. "We haven't been able to have patients regain all of their arm strength, but many of them tell us they can feel the difference," said Steven Cramer, associate professor in neurology, anatomy and neurobiology at the University of California at Irvine.







  • Cold Storage Solution For Global Warming
  • Energy Giant Total To Test Scheme To Store Carbon Emissions
  • Chinese firms win 1.46 bln dollar hydro project in Nigeria
  • Storing Carbon Dioxide Below Ground May Prevent Polluting Above

  • US takes step toward joining UN 'nuclear fuel bank' project
  • Iran To Test New Uranium Enrichment Plant Soon
  • Uranium Enrichment Centers To Dispose Of Nuclear Waste
  • British Firm Set To Upgrade Russian Nuclear Storage Facility

  • Global Assimilation Of Ionospheric Measurements Model Goes Operational
  • Airborne Dust Causes Ripple Effect on Climate Far Away
  • U.S. wood-fired boilers cause concern
  • Climate Change Affecting Outermost Atmosphere Of Earth

  • Illegal Logging Threatens Endangered Orangutans
  • Greenpeace Slams Indonesian Plan To Auction Forestry Permits
  • Nigeria May Be Left Without Forest By 2010
  • Millions Pledged To Save Canadian Amazon

  • Doomsday Vault Will Protect Millions Of Seeds
  • Canadian Farmer On Global Crusade Against GM Seeds
  • New Management Tool For East Australian Graziers
  • Ancient Genes Used To Produce Salt-Tolerant Wheat

  • EU proposes 25 percent cut in new car emissions
  • EU Reaches Compromise On New Car Emissions Plan
  • London Council Votes For Emissions-Related Parking Charges
  • Multimedia Car Radio Of The Future

  • Anger As Britons Face Air Tax Hike
  • Bats In Flight Reveal Unexpected Aerodynamics
  • Lockheed Martin And Boeing Form Strategic Alliance To Promote Next-Gen Air Transportation System
  • Time to test the Guardian Missile Defense System For Commercial Aircraft

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement