![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Oak Ridge TN (SPX) Mar 05, 2019
Scientists at the Department of Energy's Oak Ridge National Laboratory, Drexel University and their partners have discovered a way to improve the energy density of promising energy-storage materials, conductive two-dimensional ceramics called MXenes. The findings are published in Nature Energy. Today's batteries, which rely on charge stored in the bulk of their electrodes, offer high energy-storage capacity, but slow charging speeds limit their application in consumer electronics and electric vehicles. Tomorrow's energy-storage mainstays may be electrochemical capacitors, known as supercapacitors, which store charge at the surface of their electrode material for fast charging and discharging. However, at present supercapacitors lack the charge-storage capacity, or energy density, of batteries. "The energy storage community is conservative, using the same few electrolyte solvents for all supercapacitors," said principal investigator Yury Gogotsi, a Drexel University professor who planned the study with his postdoctoral researcher Xuehang Wang. "New electrode materials like MXenes require electrolyte solvents that match their chemistry and properties." The surfaces of different MXenes can be covered with diverse terminal groups, including oxygen, fluorine or hydroxyl species, which interact strongly and specifically with different solvents and dissolved salts in the electrolyte. A good electrolyte solvent-electrode match may then increase charging speed or boost storage capacity. "Our study showed that the energy density of supercapacitors based on two-dimensional MXene materials can be significantly increased by choosing the appropriate solvent for the electrolyte," added co-author Lukas Vlcek of the University of Tennessee, who conducts research in UT and ORNL's Joint Institute for Computational Sciences. "By simply changing the solvent, we can double the charge storage." The work was part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center led by ORNL and supported by the DOE Office of Science. FIRST research explores fluid-solid interface reactions with consequences for energy transport in everyday applications. Drexel's Ke Li synthesized the titanium carbide MXene from a parent "MAX" ceramic - containing titanium (denoted by "M"), aluminum ("A") and carbon ("X") - by etching out the aluminum layers to form five-ply MXene monolayers of titanium carbide. Subsequently, the researchers soaked the MXenes in lithium-based electrolytes in various solvents with dramatically different molecular structures and properties. The electrical charge was carried by lithium ions that easily insert themselves between MXene layers. Transmission electron microscopy revealed the structural integrity of the materials before and after electrochemical experiments, whereas X-ray photoelectron spectroscopy and Raman spectroscopy characterized the MXene's composition and the chemical interactions between the MXene surface and the electrolyte solvent. Electrochemical measurements showed that the maximum capacitance (amount of energy stored) was achieved using a less conductive electrolyte. This observation was unusual and counterintuitive because one would expect a commonly used acetonitrile solvent-based electrolyte, having the highest conductivity of all tested electrolytes, to deliver the best performance. In situ X-ray diffraction showed expansion and contraction of the MXene interlayer spacing during charging and discharging when acetonitrile was used, but no changes in the interlayer spacing when the propylene carbonate solvent was used. The latter solvent resulted in much higher capacitance. Furthermore, electrodes that don't expand when ions enter and exit are expected to survive a larger number of charge-discharge cycles. To probe the dynamics of electrolyte solvent media confined in the MXene layers, the researchers turned to neutron scattering, which is sensitive to hydrogen atoms contained in the solvent molecules. Finally, molecular dynamics simulations done by Vlcek revealed that interactions among the lithium ions, electrolyte solvents and MXene surfaces strongly depend on the size, molecular shape and polarity of the solvent molecules. In the case of a propylene carbonate-based electrolyte, the lithium ions are not surrounded by solvent and therefore pack tightly between MXene sheets. However, in other electrolytes, lithium ions carry solvent molecules along with them as the lithium ions migrate into the electrode, leading to its expansion upon charging. Modeling may guide the selection of future electrode-electrolyte solvent couples. "Different solvents created different confined environments that then had profound influence on charge transport and interactions of ions with the MXene electrodes," Vlcek said. "This variety of structures and behaviors was made possible by the layered structure of MXene electrodes, which can respond to charging by easily expanding and contracting the interlayer space to accommodate a much wider range of solvents than electrodes with more rigid frameworks."
Research Report: "Influences from solvents on charge storage in titanium carbide MXenes."
![]() ![]() Corvus Energy awarded the marine world's biggest battery package Bergen, Norway (SPX) Feb 28, 2019 Corvus Energy has signed a contract with Norwegian Electric Systems (NES) for the marine world's largest battery package to be installed on board Havila Kystruten's coastal vessels. "This is a big step for the cruising industry and we are extremely proud to receive this order. It demonstrates that we drive technology further by pushing boundaries for the use of batteries. The Energy Storage System (ESS) is the world's largest package ever delivered to a ship and will enable the vessels to enter fj ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |