Energy News  
Revealing Titan's Rugged Surface

Digital terrain model of a portion of Huygens' landing region. For more images of the surface of Titan go here.
by Staff Writers
Paris, France (ESA) Jun 07, 2007
During its two and a half hour descent, the cameras on Huygens showed eager scientists on Earth spectacular regions of bright highlands with river drainages and canyons, bounded by dark plains on Titan. New information about the composition of the landing region is now ready for the public.

Since the mission, planetary scientists have been using the Radar System and the Visible and Infrared Mapping Spectrometer (VIMS), on board the orbiting Cassini spacecraft to investigate the composition of the region Huygens flew over.

Before Huygens, Titan's surface was a total mystery. The reason was simple: it was covered by a very opaque haze. As the probe penetrated the layer of haze within the atmosphere, "Huygens revealed a previously invisible world," says Jean-Pierre Lebreton, ESA's Huygens Project Scientist.

Laurence Soderblom, US Geological Survey, has been trying to make sense out of what Huygens saw. Surprisingly, one of the things that proved unexpectedly difficult was locating the Huygens landing site on the images from Cassini. "When we looked at the SAR images (Synthetic Aperture Radar) and compared them to the VIMS data, we saw little correlation," reveals Soderblom.

The boundary between the bright highlands and dark plains that Huygens drifted over simply did not show up in the radar images. Finally, the clue came in the form of two isolated dark sands dunes about 30 kilometres north of the landing site visible in both SAR and Huygens' images. They are probably composed of sugar-size hydrocarbon grains between 100 and 300 microns in diameter.

Most of Titan's dunes are giants, each one stretching for up to 100 kilometres in length across the dark plains and separated by 10 kilometres. Most importantly, two dunes that showed up in both the radar and optical images gave the scientists the clue they needed to get to work. "We started to piece together a model of the way we think the surface behaves," says Soderblom.

In this model, the area around the Huygens landing site is a huge plain of dirty water ice over which lie blankets of organic (carbon-bearing) deposits that make up the bright highlands and dark dunes. The bright layers are invisible to radar waves, so Cassini SAR images see through to the lower, dirty water ice layer that is rugged in some places and smooth in others.

The deposits form when solar ultraviolet radiation and charged particles react at high altitudes with Titan's abundant methane to produce carbon- and hydrogen-bearing (hydrocarbon) molecules like ethane and acetylene, and more complex nitrogen-bearing molecules generally called tholins. These products drift down to the surface as aerosols much in the same way smog particles on Earth form and coat surfaces. On Titan however these deposits may accumulate to thicknesses of hundreds of metres deep.

The dunes are composed of sand-sized material that agglomerated, either during its descent or when reworked by geological processes on the surface. The ice and organic landforms are as different from one another as they are spectacular. To the north of Huygens' landing site are the bright highlands, displaying channels in a very ramified pattern, branching four or five times as they climb into the hills.

Stereoscopic images from the Descent Imager/Spectral Radiometer (DISR) camera on Huygens have now been analysed and show that some of the ridges between the channels rise to 150 - 200 metres in height, with slopes of thirty degrees. "This is extremely rugged terrain," says Soderblom. The shape suggests that they are drainage channels, cut by liquid methane falling as rain.

Close - by are stubby canyons with only a few branches. They have probably been formed by 'spring sapping', whereby methane flows through the subsurface before emerging as a spring near the base of a hill. The spring erodes the hillside, causing it to collapse and form a cliff face.

The third area is the flat dark plain. This is mostly water ice mixed with tholin grit. "Titan's river channels, canyons, and flood plains rival the variety seen on Earth," says Soderblom. The dark plains show markings that suggest the region occasionally experiences flash flooding, but not from the highland drainage channels. Instead large quantities of liquid methane appear to flow from east to west.

Planetary scientists can now begin to piece together the sequence of events that led to the formation of this exotic landscape. "Huygens and Cassini have taken giant steps forward in our understanding of Titan," says Soderblom.

Community
Email This Article
Comment On This Article

Related Links
Cassini-Huygens
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The Way The Wind Blows On Titan
Paris, France (ESA) Jun 06, 2007
A simulation of the winds encountered by Huygens has lead planetary scientists to believe that it's entire atmosphere is circulating around on a conveyor belt. This huge system of moving gas transports warm air from the southern hemisphere to Titan's north pole and back again.







  • Amazon State Adopts Law To Promote Forest CO2 Abatement Projects
  • Malaysia On Palmoil Charm Offensive In Europe
  • Envirepel Energy Submits 240 MW Of Renewable Energy Projects To SDGE
  • Entergy Carbon Credit Purchase Makes 270,000 Megawatt Hours Carbon Neutral

  • NGO Warns Of Explosion Risk At Russian Nuclear Storage
  • US Sees Technical Delay In India Nuclear Pact
  • US Positive On Clinching India Nuclear Accord
  • Britain To Sell Part Of British Energy

  • AIRS Global Map Of Carbon Dioxide From Space
  • Widespread Twilight Zone Detected Around Clouds
  • Rand Says Further Study Warranted On Save The World Air Technology
  • Noxious Lightning

  • Zimbabwe Forests Under Threat While Cambodia Censors Logging Report
  • Uganda Shelves Plan To Convert Rainforest
  • Indonesia's Crackdown On Illegal Logging Under Fire
  • Brazil Demonstrating That Reducing Tropical Deforestation Is Key WinWin Global Warming Solution

  • Soils Offer New Hope As Carbon Sink
  • GM Field Trials Uunderestimate Potential For Cross-Pollination
  • Space-Inspired Garden Takes Top Prize At UK's Chelsea Garden Show
  • Top Chef Warns Of Environmental Impact Of Fine Dining

  • Toyota Taken To Task In Britain For Prius Advert
  • GM To Speed Up Development Of Electric Vehicles
  • EU Institution Tests New Climate Friendly Cars
  • Power Auto Group Debuts Fuel Efficient E-Vehicle Program

  • Airlines Pledge Emissions Cuts But Warn EU Curbs Could Jeopardise Sector
  • Sandia And Boeing Collaborate To Develop Aircraft Fuel Cell Applications
  • Australia Fears Jet Flight Guilt Could Hit Tourism
  • Nondestructive Testing Keeps Bagram Aircraft Flying

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement