Energy News  
ENERGY TECH
Researchers peer into atom-sized tunnels in hunt for better battery
by Staff Writers
Chicago IL (SPX) Dec 13, 2016


3-D schematic shows how doping with potassium may facilitate the insertion of lithium ions into manganese dioxide coated on a current collector. Image courtesy Reza Shahbazian-Yassar/UIC. For a larger version of this image please go here.

Battery researchers seeking improved electrode materials have focused on "tunneled" structures that make it easier for charge-carrying ions to move in and out of the electrode. Now a team led by a researcher at the University of Illinois at Chicago has used a special electron microscope with atomic-level resolution to show that certain large ions can hold the tunnels open so that the charge-carrying ions can enter and exit the electrode easily and quickly.

"Significant research has been done to increase the energy density and power density of lithium ion battery systems," says Reza Shahbazian-Yassar, associate professor of mechanical and industrial engineering at UIC.

The current generation, he said, is useful enough for portable devices, but the maximum energy and power that can be extracted is limiting.

"So for an electric car, we need to increase the energy and power of the battery - and decrease the cost as well," he said.

His team, which includes coworkers at Argonne National Laboratory, Michigan Technological University and the University of Bath in the U.K., has focused on developing a cathode based on manganese dioxide, a very low cost and environmentally-friendly material with high storage capacity.

Manganese dioxide has a lattice structure with regularly spaced tunnels that allow charge carriers - like lithium ions - to move in and out freely.

"But for the tunnels to survive for long-lasting function, they need support structures at the atomic scale," Shahbazian-Yassar said. "We call them tunnel stabilizers, and they are generally big, positive ions, like potassium or barium."

But the tunnel stabilizers, being positively charged like the lithium ions, should repel each other.

"If lithium goes in, will the tunnel stabilizer come out?" Shahbazian-Yassar shrugged. "The research community was in disagreement about the role of tunnel stabilizers during the transfer of lithium into tunnels. Does it help, or hurt?"

The new study represents the first use of electron microscopy to visualize the atomic structure of tunnels in a one-dimensional electrode material - which the researchers say had not previously been possible due to the difficulty of preparing samples. It took them two years to establish the procedure to look for tunnels in potassium-doped nanowires of manganese dioxide down to the single-atom level.

Yifei Yuan, a postdoctoral researcher working jointly at Argonne National Laboratory and UIC and the lead author on the study, was then able to use a powerful technique called aberration-corrected scanning transmission electron microscopy to image the tunnels at sub-angstrom resolution so he could clearly see inside them - and he saw they do change in the presence of a stabilizer ion.

"It's a direct way to see the tunnels," Yuan said. "And we saw that when you add a tunnel stabilizer, the tunnels expand, their electronic structures also change, and such changes allow the lithium ions to move in and out, around the stabilizer."

The finding shows that tunnel stabilizers can help in the transfer of ions into tunnels and the rate of charge and discharge, Shahbazian-Yassar said. The presence of potassium ions in the tunnels improves the electronic conductivity of manganese dioxide and the ability of lithium ions to diffuse quickly in and out of the nanowires.

"With potassium ions staying in the center of the tunnels, the capacity retention improves by half under high cycling current, which means the battery can hold on to its capacity for a longer time," he said.

Co-authors on the Nature Communications paper are Kun He, Soroosh Sharifi-Asl, Boao Song and Anmin Nie of UIC; Chun Zhan, Zhenzhen Yang, Xiangyi Luo, Hao Wang, Khalil Amine and Jun Lu of Argonne; Hungru Chen, Stephen M. Wood and M. Saiful Islam of the University of Bath; and Wentao Yao of Michigan Tech.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Illinois at Chicago
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
NASA Research Helps Take Silver-Zinc Batteries from Idea to the Shelf
Washington DC (SPX) Dec 02, 2016
We often imagine that inventions are born whole: a eureka moment that changes history. But that's rarely how it happens. One technology that exemplifies the long, hard slog of creation is the silver-zinc battery, more than two centuries in the making. Today, the battery, which offers more energy per ounce than any other battery couple, is finally making inroads in the consumer market as a rechar ... read more


ENERGY TECH
US push to low-carbon future 'unstoppable': Biden

Aquila Capital to merge Norway's Smakraft and Norsk Gronnkraft

China's Shanghai Electric to invest $9bn in Pakistan upgrades

Trump picks fossil fuel ally to head environment agency

ENERGY TECH
Clarifying the behaviors of negative hydrogen ions

NASA Research Helps Take Silver-Zinc Batteries from Idea to the Shelf

The promise of greener power generation

Delivering a power punch

ENERGY TECH
Apple invests in China wind farms

War remnants cleared for German wind farm

German energy company plants wind farm seed in Texas

New York to bid in Federal Offshore Wind Auction

ENERGY TECH
Hydrogen from sunlight - but as a dark reaction

Swiss unveil stratospheric solar plane

New York funds low income access to solar power

Coronal Energy, powered by Panasonic, Announces Solar Acquisition Program

ENERGY TECH
Bulgaria seeks investor to revive nuclear project

Japan switches on nuclear reactor after safety shutdown

Construction of nuclear fuel fabrication plant has started in Kazakhstan

Court backs damage claims over German nuclear exit

ENERGY TECH
People willing to pay more for new biofuels

Investing in the 'bioeconomy' could create jobs and reduce carbon emissions

Argonne researchers study how reflectivity of biofuel crops impacts climate

UNIST researchers turn waste gas into road-ready diesel fuel

ENERGY TECH
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

ENERGY TECH
China: Economic development tied to climate goals

Gore meeting latest sign Trump softening on climate?

World cities seek $375 bn to fight climate change

How the cold 1430s led to famine and disease









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.