Energy News  
Researcher Observes Molecular Chaos For The First Time

Dr. Jeffrey Olafsen said the results also are beneficial to building a fundamental thermodynamics for systems driven far from equilibrium.
by Staff Writers
Waco TX (SPX) Jul 26, 2007
A Baylor University researcher has created the first experimental observation of molecular chaos, providing evidence that a widely accepted, yet unproven, assumption is indeed accurate. Molecular chaos is an assumption that the velocities of colliding particles are uncorrelated and independent of position. An example of molecular chaos is the air in any room. While the nitrogen and oxygen atoms are flying around with some average square speed because of the temperature in the room, they are not related, so the air does not spontaneously fly off in one direction of the room without some sort of external pressure change, like a window opening.

The molecular chaos assumption, which is part of the kinetic theory of gases, is widely thought to be true because everything else that arises and follows from that assumption works so well. However, it has been nearly impossible to prove the assumption, until now.

"It was very exciting when we first happened upon the observation," said Dr. Jeffrey Olafsen, associate professor of physics at Baylor and a lead investigator on the project. "Prior observations have been made in computer simulations, but this is the first time it has been measured in an experimental system."

Olafsen, in collaboration with Dr. G. William Baxter, associate professor of physics at Pennsylvania State University - Erie, constructed two "gases," or layers, of ball bearings. In the layer where molecular chaos held, researchers measured Maxwell Boltzmann statistics, like those that predict the mean square speed of particles in the air in the room. In the layer where the assumption of molecular chaos failed, the statistics did not obey Maxwell Boltzmann statistics. Perhaps the most interesting part, researchers said, is that the two "gases" were in contact with each other while simultaneously demonstrating their respective behavior.

"The two layers can be thought of as two gases simultaneously in thermal contact, and yet, one of the gases demonstrates molecular chaos while the other does not," Olafsen said. "It means that the particulars of how energy is injected and distributed within the two gases is important to understanding when a system will demonstrate molecular chaos."

Olafsen said the results also are beneficial to building a fundamental thermodynamics for systems driven far from equilibrium.

Community
Email This Article
Comment On This Article

Related Links
Baylor University
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Theoretical Physicists Organize To Stem Outsourcing
Buffalo NY (SPX) Jul 23, 2007
Mention "outsourcing" and people tend to think of fields like manufacturing or telemarketing; theoretical physics isn't even on the list. Yet the scientists who develop theoretical predictions for high-energy particle physics experiments say "outsourcing" in their field has allowed the U.S. to lag behind in this area of high-profile, global science.







  • Wanted: Wearable Power System, Batteries Included
  • Carbon Trading Exchange Goes Live In Australia
  • GE Acquires Major Landfill Gas Project In California
  • FPL Energy Signs Deal With Citrus Energy For First Of Its Kind Ethanol Plant

  • Russian Activists Denounce Cover-Up On Nuclear Protest Attack
  • French Firm Could Build Shield Over Main Chernobyl Reactor
  • Russia Puts Off Bushehr NPP Launch Until Fall 2008
  • US Lawmakers Question Secretive US-India Nuclear Pact

  • Invisible Gases Form Most Organic Haze In Both Urban And Rural Areas
  • BAE Systems Completes Major New Facility For Ionospheric Physics Research
  • NASA Satellite Captures First View Of Night-Shining Clouds
  • Main Component For World Latest Satellite To Measure Greenhouse Gases Delivered

  • Peru Launches Drive To Regrow Lost Forests And Jungles
  • Increase In Creeping Vines Signals Major Shift In Southern US Forests
  • Report Finds Forest Enterprises Stifled By Red Tape, Putting Forests And Incomes At Risk
  • Voracious China Gobbles Up Forests, Recycled Paper

  • Natural Disasters Hit Chinese Grain Output
  • NASA Researchers Find Satellite Data Can Warn Of Famine
  • Eat A Steak, Warm The Planet
  • Organic Farming Can Feed the World

  • Networkcar Selects Siemens Modules For Networkfleet Wireless Vehicle Management System
  • Report Finds Many Benefits From Plug-In Hybrid Electric Vehicles
  • New Research Seeks To Enhance Alternative Fuel Integration In Public Vehicle Fleets
  • New York Congestion Plan Hits Bump In The Road

  • Steering Aircraft Clear Of Choppy Air
  • EAA AirVenture 2007
  • Sensors May Monitor Aircraft For Defects Continuously
  • Goodrich Contributes Technology For Environmentally-Friendly Engine Research Program

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement