![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Plainsboro NJ (SPX) Sep 27, 2017
A major issue facing ITER, the international tokamak under construction in France that will be the first magnetic fusion device to produce net energy, is whether the crucial divertor plates that will exhaust waste heat from the device can withstand the high heat flux, or load, that will strike them. Alarming projections extrapolated from existing tokamaks suggest that the heat flux could be so narrow and concentrated as to damage the tungsten divertor plates in the seven-story, 23,000 ton tokamak and require frequent and costly repairs. This flux could be comparable to the heat load experienced by spacecraft re-entering Earth's atmosphere. New findings of an international team led by physicist C.S. Chang of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) paint a more positive picture. Results of the collaboration, which has spent two years simulating the heat flux, indicate that the width could be well within the capacity of the divertor plates to tolerate. "This could be very good news for ITER," Chang said of the findings, published in August in the journal Nuclear Fusion. "This indicates that ITER can produce 10 times more power than it consumes, as planned, without damaging the divertor plates prematurely." At ITER, spokesperson Laban Coblentz, said the simulations were of great interest and highly relevant to the ITER project. He said ITER would be keen to see experimental benchmarking, performed for example by the Joint European Torus (JET) at the Culham Centre for Fusion Energy in the United Kingdom, to strengthen confidence in the simulation results. Chang's team used the highly sophisticated XGC1 plasma turbulence computer simulation code developed at PPPL to create the new estimate. The simulation projected a width of 6 millimeters for the heat flux in ITER when measured in a standardized way among tokamaks, far greater than the less-than 1 millimeter width projected through use of experimental data. Deriving projections of narrow width from experimental data were researchers at major worldwide facilities. In the United States, these tokamaks were the National Spherical Torus Experiment before its upgrade at PPPL; the Alcator C-Mod facility at MIT, which ceased operations at the end of 2016; and the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego.
Widely different conditions Chang's team used basic physics principles, rather than empirical projections based on the data from existing machines, to derive the simulated wider prediction. The team first tested whether the code could predict the heat flux width produced in experiments on the U.S. tokamaks, and found the predictions to be valid. Researchers then used the code to project the width of the heat flux in an estimated model of ITER edge plasma. The simulation predicted the greater heat-flux width that will be sustainable within the current ITER design.
Supercomputers enabled simulation
![]() Plainsboro NJ (SPX) Aug 28, 2017 Physicist Fatima Ebrahimi at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has for the first time used advanced models to accurately simulate key characteristics of the cyclic behavior of edge-localized modes (ELMs), a particular type of plasma instability. The findings could help physicists more fully comprehend the behavior of plasma, the hot, charged g ... read more Related Links Princeton Plasma Physics Laboratory Powering The World in the 21st Century at Energy-Daily.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |