Energy News  
Rare 'Tumbleweed' Survives Antarctic Conditions

illustration only

Arlington - Mar 04, 2004
A balloon-shaped robot explorer that one day could search for water on other planets has survived some of the most trying conditions on planet Earth during a 70-kilometer (40-mile), wind-driven trek across Antarctica.

The Tumbleweed Rover, which is being developed at NASA's Jet Propulsion Laboratory in Pasadena, Calif., left the National Science Foundation's Amundsen-Scott South Pole Station on Jan. 24, completing its roll across Antarctica's polar plateau roughly eight days later.

Along the way, the beach-ball-shaped device, roughly two meters (six feet) in diameter, used the global Iridium satellite network to send information about its position, the surrounding air temperature, pressure, humidity and light intensity to a JPL ground station.

The test was designed to confirm the rover's long-term durability in an extremely cold environment, with an eye toward eventually using the devices to explore the Martian polar caps and other planets in the solar system. It reinforces the findings of a test conducted previously on the Greenland ice cap, also carried out under the auspices of NSF's Office of Polar Programs (OPP).

OPP manages the U.S. Antarctic Program, arranging logistical support and infrastructure for NSF-supported scientists as well as other government agencies, such as NASA, when they conduct science in Antarctica.

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions.

The final Tumbleweed Rover is envisioned as a lightweight, roughly 40-kilogram (88 pound) device that can serve multiple roles as an independent robotic explorer. The rover's design allows it to act as a parachute while descending through an atmosphere, an air bag on landing, and, ultimately, as an unmanned vehicle equipped with an package of scientific instruments.

Tumbleweed is the brainchild of several JPL scientists, including Alberto Behar, a researcher with JPL's robotic vehicles group.

During a three-day deployment at the South Pole, Behar unpacked, assembled, inflated, tested, and deployed the rover. He says that the efficiency of the deployment is testament to Tumbleweed' s cost-effectiveness and ease of use.

Even though the average external temperature during the rover's deployment approached minus 30 degrees Celsius (minus 22 degrees Fahrenheit), the rover kept its internal instrument payload at an average temperature of roughly 30 degrees Celsius (86 degrees Fahrenheit) using excess heat from the instrument electronics circulated by an air pump.

The ultra-durable ball reached speeds of 30 kilometers per hour (10 miles per hour) over the Antarctic ice cap, and traveled at an average speed of about six kilometers per hour (3.7 mph). V The winds at the South Pole were unusually low during the test. As a result, the rover did not move at all for several periods during its deployment.

But, even taking those lulls into account, Tumbleweed managed an average speed of 1.3 kilometers per hour (0.8 mph) over the course of the deployment. Such speeds are unattainable in conventional, mechanical rovers--such as Spirit and Opportunity, currently operating on the surface of Mars--which average little more than 0.05 kilometers per hour (0.03 mph) on flat, dry ground.

Behar said the rover's design is especially well suited for polar missions that use instrument packages to look for water beneath the surface of an ice sheet, a task that cannot be done accurately from orbit.

Plans to construct the next generation Tumbleweed rover are already underway at JPL.

Design refinements are likely to focus on reducing the rover's weight and rolling resistance to lower the minimum winds needed to propel the rover and enable it to travel farther and adapting the payload to include a ground-penetrating radar or magnetometer to conduct ice surveys.

Behar said he hopes an updated version of Tumbleweed will be deployed again in late 2004 or early 2005, and that the Tumbleweed design may one day find itself rolling over the polar icecaps of Mars.

Community
Email This Article
Comment On This Article

Related Links
NSF
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Nuclear Space Technology at Space-Travel.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Rewriting Glacial History In Pacific North America
Edmonton AB (SPX) Jan 10, 2006
Although the story on glacier fluctuations in northwestern North America over the last 10,000 years has remained largely unchanged for decades, new evidence discovered by a University of Alberta researcher will rewrite that glacial history and offer clues about our climate history during the last several thousand years.







  • Mitsubishi Electric Seals Solar Panel Contract With
  • Study Gives Lowdown On High-Temperature Superconductivity
  • Fuel Cell Reaches Milestone
  • Compact Fuel Cells Could Oust Batteries

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Hewitt Pledges Support For Aerospace Industry
  • National Consortium Picks Aviation Technology Test Site
  • Wright Flyer Takes To The Sky In Las Vegas
  • Aurora Builds Low-speed Wind Tunnel

  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems
  • Boeing To Build Space-borne Power Generator

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement