Energy News  
Precision Bonding Makes Tiny High Performance Actuators Possible

Dr. Srinivas A. Tadigadapa, Penn State associate professor of electrical engineering and a developer of the bonding process and new microactuator.
  • See possible applications of the new piezoelectric microactuator.

  • University Park PA (SPX) Oct 05, 2005
    Using a new precision bonding process they developed, Penn State researchers have designed and fabricated tiny new piezoelectric microactuators - the largest only a hair's breadth wide - based on coupling commercially available materials with existing micromachining technology.

    The new actuators promise to be low cost, and capable of providing controlled force, high resolution and large displacements appropriate for applications in RF switches for cell phones, for example, or optical switches for wide screen TVs. Other potential applications include microfluidic pumps and valves, micromanipulators for nanoscale handling and atomic force microscope drives.

    Dr. Srinivas A. Tadigadapa, associate professor of electrical engineering and a developer of the bonding process and microactuator, says, "These new piezoelectric microactuators are the first realized using microfabrication methods, a mature technology used to make computer chips and micromachines from silicon-based materials. Our new low temperature wafer bonding techniques, which make the actuators possible, can also be used for precision integration of dissimilar materials in other micro-electro-mechanical systems."

    The new actuators and bonding process are described in a paper, Fabrication and performance of a flextensional microactuator, which appears in the current online edition of the Journal of Micromechanics and Microengineering (JMM). The paper will also be featured in the October print version of JMM.

    The authors are Jongpil Cheong, who earned his doctorate at Penn State this year, Abhijat Goyal, a doctoral candidate in electrical engineering, Dr. Tadigadapa and Dr. Christopher D. Rahn, professor of mechanical engineering.

    The new actuators are made from flat strips of bulk PZT, a commercially available piezoelectric material that shrinks slightly when a voltage is applied to it, and a precision micromachined silicon beam. Bonding the silicon beam to the PZT amplifies and converts the PZT shape change into a convex deflection when the silicon beam buckles as the PZT shrinks.

    In operation in the actuator, the measured deflection of the silicon beam shows a gain factor of 20 with respect to the PZT dimensional change.

    For the bonding process in fabricating the new actuators, the Penn State researchers use photolithography and low temperature solders to produce the distinctive bridge shape they need.

    Dr. Tadigadapa notes, "The PZT depoles if you heat it too high. Therefore, the temperature is crucial. A low temperature solder bonding process at 200 C was used in this work."

    Using their new approach, the researchers have fabricated actuators with dimensions ranging from 350 to 600 microns in length, 50 to 100 microns (about the width of a human hair) in width, and 5 to 6 microns in thickness.

    In tests, the actuators showed good repeatability with a large amplitude stroke of about 8 microns when actuated using -100V to 100V. The bandwidth of the actuator was measured at 265 KHz.

    Community
    Email This Article
    Comment On This Article

    Related Links
    Penn State
    SpaceDaily
    Search SpaceDaily
    Subscribe To SpaceDaily Express
    Nano Technology News From SpaceMart.com
    Computer Chip Architecture, Technology and Manufacture



    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


    Study Shows Nanoparticles Could Damage Plant Life
    Newark NJ (SPX) Nov 23, 2005
    A nanoparticle commonly used in industry could have a damaging effect on plant life according to a report by an environmental scientist at New Jersey Institute of Technology (NJIT).







  • DOE Publishes Roadmap For New Biological Research For Energy Needs
  • Hurricanes Destroyed 109 Oil Platforms: US Government
  • New Battery Technology Powers For 12 Years
  • After Hurricanes, US In New Push For Energy Efficiency

  • China Aims To Operate 'Super-Efficient' Nuclear Reactor In 2010
  • Armenia Chooses France's Areva To Build New Nuclear Waste Facility
  • Britain Could Be Receptive To Boost In Nuclear Power: Minister
  • Leaked Report Alleges Safety Problems At British Nuclear Plant: Newspaper

  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source



  • Crop Scientists Improve "Supergrain" For Impoverished Farmers
  • Gourmet Space Dinner On Greenland Icecap
  • Sophisticated Forecasts Help India's Farmers Survive Patchy Monsoon
  • Analysis: N.Korea No Longer Wants Food Aid?

  • Motorists To Pay 'Congestion' Charge Over Broader Swath Of London
  • Solar Cars Driving Towards A Hydrogen Future
  • Mapflow And DTO Announce Dublin Satellite Tolling Study
  • German Car Makers Scramble To Jump On Hybrid Engine Bandwagon

  • NGC Awards International Contracts For F-35 Joint Strike Fighter
  • Nigeria To Buy Fighter Planes From China
  • First Joint Air Dominance Center In The World To Open
  • China's Top Airplane Maker Aims To Become Major Global Player

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement