Energy News  
STELLAR CHEMISTRY
Planck Highlights The Complexity Of Star Formation

An active star-formation region in the Orion Nebula, as seen By Planck. This image covers a region of 13x13 degrees. It is a three-colour combination constructed from three of Planck's nine frequency channels: 30, 353 and 857 GHz. Credits: ESA/LFI and HFI Consortia
by Staff Writers
Paris, France (ESA) Apr 27, 2010
New images from ESA's Planck space observatory reveal the forces driving star formation and give astronomers a way to understand the complex physics that shape the dust and gas in our Galaxy.

Star formation takes place hidden behind veils of dust but that doesn't mean we can't see through them. Where optical telescopes see only black space, Planck's microwave eyes reveal myriad glowing structures of dust and gas. Now, Planck has used this ability to probe two relatively nearby star-forming regions in our Galaxy.

The Orion region is a cradle of star formation, some 1500 light-years away. It is famous for the Orion Nebula, which can be seen by the naked eye as a faint smudge of pink.

The first image covers much of the constellation of Orion. The nebula is the bright spot to the lower centre. The bright spot to the right of centre is around the Horsehead Nebula, so called because at high magnifications a pillar of dust resembles a horse's head.

The giant red arc of Barnard's Loop is thought to be the blast wave from a star that blew up inside the region about two million years ago. The bubble it created is now about 300 light-years across.

In contrast to Orion, the Perseus region is a less vigorous star-forming area but, as Planck shows in the other image, there is still plenty going on.

The images both show three physical processes taking place in the dust and gas of the interstellar medium. Planck can show us each process separately. At the lowest frequencies, Planck maps emission caused by high-speed electrons interacting with the Galaxy's magnetic fields. An additional diffuse component comes from spinning dust particles emitting at these frequencies.

At intermediate wavelengths of a few millimetres, the emission is from gas heated by newly formed hot stars.

At still higher frequencies, Planck maps the meagre heat given out by extremely cold dust. This can reveal the coldest cores in the clouds, which are approaching the final stages of collapse, before they are reborn as fully-fledged stars. The stars then disperse the surrounding clouds.

The delicate balance between cloud collapse and dispersion regulates the number of stars that the Galaxy makes. Planck will advance our understanding of this interplay hugely, because, for the first time, it provides data on several major emission mechanisms in one go.

Planck's primary mission is to observe the entire sky at microwave wavelengths in order to map the variations in the ancient radiation given out by the Big Bang. Thus, it cannot help but observe the Milky Way as it rotates and sweeps its electronic detectors across the night sky.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Planck space observatory
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


STELLAR CHEMISTRY
M81 Halo Sheds Light On Galaxy Formation
Tokyo, Japan (SPX) Apr 23, 2010
Observations with Subaru Telescope's Prime Focus Camera (Suprime-Cam) have revealed an extended structure of the spiral galaxy Messier 81 (M81) that may hold a key to understanding the formation of galaxies. This structure could be M81's halo. Until now, ground-based telescopes have only observed individual stars in the haloes around the Milky Way and Andromeda Galaxies. Differences in M81's ext ... read more







The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement