![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Tuscon AZ (SPX) Oct 20, 2005 University of Arizona physicists have directly measured how close speeding atoms can come to a surface before the atoms' wavelengths change. Theirs is a first, fundamental measurement that confirms the idea that the wave of a fast-moving atom shortens and lengthens depending on its distance from a surface, an idea first proposed by pioneering quantum physicists in the late 1920s. The measurement tells nanotechnologists how small they can make extremely tiny devices before a microscopic force between atoms and surfaces, called van der Waals interaction, becomes a concern. The result is important both for nanotechnology, where the goal is to make devices as small as a few tens of billionths of a meter, and for atom optics, where the goal is to use the wave nature of atoms to make more precise sensors and study quantum mechanics. UA optical sciences doctoral candidate John D. Perreault and UA assistant professor of physics Alexander D. Cronin report the experiment in the Sept. 23 Physical Review Letters. The paper can be found online here. Perreault and Cronin used a sophisticated device called an atom interferometer in making the measurement. Cronin brought the 12-foot-long device to UA from MIT three years ago. The atom interferometer was assembled over 15 years with more than $2 million in research grants from the National Science Foundation, the UA and the Research Corp. Now in Cronin's laboratory on the third floor of the UA's Physics and Atmospheric Sciences Building, the machine is one of only a half-dozen such instruments operating in the United States and Europe. It splits and recombines atom waves so that scientists can observe the position of the wave crests. "Our research provides the first direct experimental evidence that a surface 25 nanometers away (25 billionths of a meter) causes a shift in the atom wave crests," Perreault said. "It shows that the van der Waals interaction may be a small scale force, but it's a big deal for atoms." Perreault and Cronin found that atoms closer than 25 nanometers to a surface are very strongly attracted to the surface because of the van der Waals interaction-- so strongly that the atoms are accelerated with the force of a million g's.
![]() ![]() ![]()
|