Energy News  
NANO TECH
Organic Nanoelectronics A Step Closer

This image shows the polymers that were created at a resolution of 5 nanometers (the average strand of human hair is 80,000 nanometers wide). Credit: Dept. of Chemistry, McGill University
by Staff Writers
Quebec, Canada (SPX) Jun 17, 2010
Although they could revolutionize a wide range of high-tech products such as computer displays or solar cells, organic materials do not have the same ordered chemical composition as inorganic materials, preventing scientists from using them to their full potential.

But an international team of researchers led by McGill's Dr. Dmitrii Perepichka and the Institut national de la recherche scientifique's Dr. Federico Rosei have published research that shows how to solve this decades-old conundrum.

The team has effectively discovered a way to order the molecules in the PEDOT, the single most industrially important conducting polymer.

Although Dr. Perepichka is quick to point out that the research is not directly applicable to products currently in the market, he gives the example of a possible use for the findings in computer chips.

"It's a well known principle that the number of transistors in a computer chip doubles every two years," he said, "but we are now reaching the physical limit. By using molecular materials instead of silicon semiconductor, we could one day build transistors that are ten times smaller than what currently exists." The chips would in fact be only one molecule thick.

The technique sounds deceptively simple. The team used an inorganic material - a crystal of copper - as a template. When molecules are dropped onto the crystal, the crystal provokes a chemical reaction and creates a conducting polymer.

By using a scanning probe microscope that enabled them to see surfaces with atomic resolution, the researchers discovered that the polymers had imitated the order of the crystal surface.

The team is currently only able to produce the reaction in one dimension, i.e. to make a string or line of molecules. The next step will be to add a second dimension in order to make continuous sheets ("organic graphite") or electronic circuits.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
McGill University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NANO TECH
Researchers Capture First Images Of Sub-Nano Pore Structures
Ithaca NY (SPX) Jun 17, 2010
Moore's law marches on: In the quest for faster and cheaper computers, scientists have imaged pore structures in insulation material at sub-nanometer scale for the first time. Understanding these structures could substantially enhance computer performance and power usage of integrated circuits, say Semiconductor Research Corporation (SRC) and Cornell University scientists. To help maintain ... read more







The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement