Energy News  
ENERGY TECH
Newly developed compound may enable sustainable, cost-effective, large-scale energy storage
by Staff Writers
Guangzhou, China (SPX) Nov 18, 2021

Photo of aqueous redox flow battery

To produce a cost-effective redox flow battery, researchers based at the South China University of Technology have synthesized a molecular compound that serves as a low-cost electrolyte, enabling a stable flow battery that retains 99.98% capacity per cycle. Comprising two tanks of opposing liquid electrolytes, the battery pumps the positive and negative liquids along a membrane separator sandwiched between electrodes, facilitating ion exchanges to produce energy.

Significant work has been dedicated to developing the negative electrolyte liquid, while the positive electrolyte liquid has received less attention, according to corresponding author Zhenxing Liang, professor in the Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology.

"Aqueous redox flow batteries can realize the stable electrical output for using unsteady solar and wind energy, and they have been recognized as a promising large-scale energy storage technology," Liang said. "Electroactive organic merit of element abundance, low cost and flexible molecular control over the electrochemical features for both positive and negative electrolytes are regarded as key to developing next-generation redox flow batteries."

Liang and his team focused on TEMPO, a chemical compound with easily reversed oxidation states and high potential for energy, a desired quality in positive electrolytes.

"However, TEMPO cannot be directly applied to aqueous redox flow batteries due to the high hydrophobicity of the molecular skeleton," Liang said, explaining that TEMPO, left unmodified, will not dissolve in the liquid needed to facilitate the energy exchange in the flow batteries. "We developed a strategy to functionalize TEMPO with viologen, an organic compound that has highly reversible redox reactions, to improve TEMPO's hydrophilicity."

According to Liang, viologen is highly soluble in water, which increases TEMPO's ability to dissolve in water. Viologen also chemically withdraws electrons from atomic partners, which elevates its potential to change its oxidative state. Viologen is also a salt, which endows TEMPO with what Liang calls "a decent conductivity" in an aqueous solution.

When the synthesized viologen-modified TEMPO was tested in a flow battery, the researchers found that the battery retained capacity of 99.98% per cycle, meaning the battery could hold nearly all its stored energy when not in active use.

"This work overcomes the disadvantages of TEMPO by viologen-functionalization and realizes its application in aqueous redox flow battery," Liang said. "The molecular design concept provides a strategy for novel organic electroactive materials and lays a foundation for the application of aqueous organic flow battery."

Research Report: "Viologen-Decorated TEMPO for Neutral Aqueous Organic Redox Flow Batteries"


Related Links
South China University of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Large-scale synthesis methods for single-atom catalysts for alkaline fuel cells
Seoul, South Korea (SPX) Nov 12, 2021
Alkaline fuel cells (AFC) convert the chemical energy of hydrogen and oxygen into electrical energy, while only producing water as a by-product. This makes them an extremely attractive next generation, environmentally friendly energy source. Although platinum catalysts are generally employed in alkaline fuel cells, they are expensive and also experience challenges related to stability when used in alkaline fuel cells. As a result, single-atom catalysts (SACs), as formed on carbon supports, are bec ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Top banking regulator urges climate rules for lenders

Global powers urged to go further after UN climate deal

COP26 strikes hard-fought deal but UN says 'not enough'

World needs trillions to face climate threat: draft UN report

ENERGY TECH
The reasons behind lithium-ion batteries' rapid cost decline

Thermal energy storage could play major role in decarbonizing buildings

Sustainable electrochemical process could revolutionize lithium-ion battery recycling

New material could be two superconductors in one

ENERGY TECH
DLR starts cooperation with ENERCON

RWE ups renewables investment as end to coal looms

Green hydrogen from expanded wind power in China

Scientists bring efficiency to expanding offshore wind energy

ENERGY TECH
Making solar energy even more sustainable with light-powered technology

Israel, Jordan agree US-brokered solar power for water deal

Mystery of high performing novel solar cell materials revealed in stunning clarity

Ultrathin solar cells get a boost

ENERGY TECH
Robotics specialists share their ongoing projects

Framatome completes purchase of Rolls Royce Civil Nuclear Instrumentation and Control

Framatome delivers industry's first complete accident tolerant fuel assembly

Options for the Diablo Canyon nuclear plant

ENERGY TECH
How sugar-loving microbes could help power future cars

Feeding sugar to bacteria may lead to less harmful fuel for cars, trucks

Bioenergy crops better for biodiversity than food-based agriculture

Recycling CO2 to fuel a carbon-neutral future

ENERGY TECH
Market forces halved methane emissions from Uinta Basin oil and gas wells

Australian energy firm sparks outrage with new gas project

Austin says US unwavering in 'strong' Mideast security commitment

New technique improves conversion of carbon dioxide into liquid fuels

ENERGY TECH
Climate envoy Kerry voices hope for more US-China cooperation

'Down' but not 'out': Growth needs fuel India's coal addiction

Harvard calls for more comprehensive research into solar geoengineering

Pacific Ocean, not ice sheet, shifted West Coast storms south









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.