![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Plainsboro NJ (SPX) Apr 23, 2018
Scientists seeking to bring fusion - the power that drives the sun and stars - down to Earth must first make the state of matter called plasma superhot enough to sustain fusion reactions. That calls for heating the plasma to many times the temperature of the core of the sun. In ITER, the international fusion facility being built in France to demonstrate the feasibility of fusion power, the device will heat both the free electrons and the atomic nuclei - or ions - that make up the plasma. The question is, what will this heating mix do to the temperature and density of the plasma that are crucial to fusion production? New research indicates that understanding the combined heating shows how we could improve the production of fusion in ITER and other next-generation fusion facilities - a key finding of physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), the DIII-D National Fusion Facility that General Atomics operates for the DOE, and other collaborators. "This shows what happens when electron heating is added to ion heating," said PPPL physicist Brian Grierson, who led testing of a computer model that projected the DIII-D results to ITER. The model, created by Gary Staebler of General Atomics and reported in a paper in Physics of Plasmas with Grierson as first author, investigated the DIII-D experimental results in conditions mimicking those expected in ITER. Diagnostics supplied by the University of Wisconsin-Madison and the University of California, Los Angeles measured the resulting turbulence, or random fluctuations and eddies, that took place in the plasma.
Multiscale turbulence The combined electron and ion heating altered the gradient, or spatial rate of change in the plasma density. This finding was significant because the fusion power that ITER and other next-generation tokamaks produce will increase as the density grows greater. Moreover, the increase took place without causing impurities to accumulate in the core of the plasma and cool it down, which could halt fusion reactions. The scientists used a "reduced physics" model called TGLF that simplified the massively parallel and costly simulations of multiscale turbulence that require millions of hours of computing time on supercomputers. The researchers ran this simplified version hundreds of times on PPPL computers to test the impact on the model of uncertainties stemming from the DIII-D experiments. "The TGLF model exploits the weak turbulence properties of tokamaks like ITER," said Staebler. "It approximately computes the plasma transport billions of times faster than a gyrokinetic multiscale turbulence simulation run on high-performance supercomputers."
Impact of electron heating Results indicated that studying multiscale turbulence will be essential to understanding how to deal with the multiscale effect on the transport of heat, particles and momentum in next-generation tokamaks, or fusion devices, Grierson noted. "We need to understand transport under ion and electron heating to confidently project to future reactors," he said, "because fusion power plants will have both types of heating."
![]() ![]() Tungsten 'too brittle' for nuclear fusion reactors Huddersfield UK (SPX) Apr 16, 2018 Scientists at the University of Huddersfield have been using world-class new facilities to carry out experiments that could aid the development of nuclear fusion reactors, widely regarded as the "Holy Grail" solution to future energy needs. By simulating the damage caused by high energy neutrons and alpha particles produced during the fusion process, the Huddersfield researchers have discovered that tungsten - a favoured choice of metal within the reactor - is liable to become brittle, leading to ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |