Energy News  
ENERGY TECH
New model sheds light on key physics of magnetic islands that halt fusion reactions
by Staff Writers
Plainsboro NJ (SPX) Jun 11, 2018

file illustration only

Magnetic islands, bubble-like structures that form in fusion plasmas, can grow and disrupt the plasmas and damage the doughnut-shaped tokamak facilities that house fusion reactions. Recent research at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has used large-scale computer simulations to produce a new model that could be key to understanding how the islands interact with the surrounding plasma as they grow and lead to disruptions.

The findings, which overturn long-held assumptions of the structure and impact of magnetic islands, are from simulations led by visiting physicist Jae-Min Kwon. Kwon, on a year-long sabbatical from the Korean Superconducting Tokamak Advanced Research (KSTAR) facility, worked with physicists at PPPL to model the detailed and surprising experimental observations recently made on KSTAR.

Researchers intrigued
"The experiments intrigued many KSTAR researchers including me," said Kwon, first author of the new theoretical paper selected as an Editor's Pick in the journal Physics of Plasmas.

"I wanted to understand the physics behind the sustained plasma confinement that we observed," he said. "Previous theoretical models assumed that the magnetic islands simply degraded the confinement instead of sustaining it. However, at KSTAR, we didn't have the proper numerical codes needed to perform such studies, or enough computer resources to run them."

The situation turned Kwon's thoughts to PPPL, where he has interacted over the years with physicists who work on the powerful XGC numerical code that the Laboratory developed. "Since I knew that the code had the capabilities that I needed to study the problem, I decided to spend my sabbatical at PPPL," he said.

Kwon arrived in 2017 and worked closely with C.S. Chang, a principal research physicist at PPPL and leader of the XGC team, and PPPL physicists Seung-Ho Ku, and Robert Hager. The researchers modeled magnetic islands using plasma conditions from the KSTAR experiments. The structure of the islands proved markedly different from standard assumptions, as did their impact on plasma flow, turbulence, and plasma confinement during fusion experiments.

Fusion, the power that drives the sun and stars, is the fusing of light atomic elements in the form of plasma - the hot, charged state of matter composed of free electrons and atomic nuclei - that generates massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

Long-absent understanding
"Understanding how islands interact with plasma flow and turbulence has been absent until now," Chang said. "Because of the lack of detailed calculations on the interaction of islands with complicated particle motions and plasma turbulence, the estimate of the confinement of plasma around the islands and their growth has been based on simple models and not well understood."

The simulations found the plasma profile inside the islands not to be constant, as previously thought, and to have a radial structure. The findings showed that turbulence can penetrate into islands and that the plasma flow across them can be strongly sheared so that it moves in opposite directions. As a result, plasma confinement can be maintained while the islands grow.

These surprising findings contradicted past models and agreed with the experimental observations made on KSTAR. "The study exhibits the power of supercomputing on problems that could not be studied otherwise," Chang said. "These findings could lay new groundwork for understanding the physics of plasma disruption, which is one of the most dangerous events a tokamak reactor could encounter."

Millions of processor hours
Computing the new model required 6.2 million processor-core hours on the Cori supercomputer at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science user facility at Lawrence Berkeley National Laboratory. The processing time equaled thousands of years on a desktop computer.

"What I wanted was quantitatively accurate results that could be directly compared with the KSTAR data," Kwon said. "Fortunately, I could access enough resources on NERSC to achieve that goal through the allocation given to the XGC program. I am grateful for this opportunity."

Going forward, a larger scale computer could allow the XGC code to start from the spontaneous formation of the magnetic islands and show how they grow, in self-consistent interaction, with the sheared plasma flow and plasma turbulence. The results could lead to a way to prevent disastrous disruptions in fusion reactors.

Research paper


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Antimatter study to benefit from recipe for ten-fold spatial compression of plasma
Washington DC (SPX) May 04, 2018
An international team of physicists studying antimatter have now derived an improved way of spatially compressing a state of matter called non-neutral plasma, which is made up of a type of antimatter particles, called antiprotons, trapped together with matter particles, like electrons. The new compression solution, which is based on rotating the plasma in a trapped cavity using centrifugal forces like a salad spinner, is more effective than all previous approaches. In this study published in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Trump readies new plan to aid coal and nuclear power

Carbon dioxide emissions drop from U.S. power sector

Study highlights environmental cost of tearing down Vancouver's single-family homes

Bitcoin estimated to use half a percent of the world's electric energy by end of 2018

ENERGY TECH
Novel NUS-developed hydrogel invented harnesses air moisture for practical applications

Researchers predict materials to stabilize record-high capacity lithium-ion battery

Better, faster, stronger: Building batteries that don't go boom

Scientists improve ability to measure electrical properties of plasma

ENERGY TECH
Cryptocurrency blowing in the wind as mine opens in Estonia

U.S. Atlantic states eye offshore wind leadership

European wind energy generation potential in a warmer world

New York to world's largest offshore wildlife aerial survey

ENERGY TECH
Flexible solar cells: Will they someday power your devices?

Optimized mounting enables shorter solar power purchase deals for the mining sector

French energy company ENGIE claims renewable edge

UK set to smash renewable energy targets for 2020

ENERGY TECH
Fire in Chernobyl zone, Kiev says radiation levels safe

World first EPR nuclear reactor begins work in China

Ukraine puts out forest fire around Chernobyl

UK mulls direct stake in Hitachi nuclear plant: minister

ENERGY TECH
Scientists sustainably 3D print large objects out of cellulose

Polymer researchers discover path to sustainable and biodegradable polyesters

'Deforestation-free' palm oil not as simple as it sounds

Advanced biofuels can be produced extremely efficiently, confirms industrial demonstration

ENERGY TECH
Qatar taps into giant Argentinean shale reserve

Banned weapons stoke deadly violence in Nigeria

Gazprom gets more permits for Nord Stream 2

Oil prices slip on G7 trade concerns

ENERGY TECH
'Water is life': Ivory Coast city struggles with crippling drought

European Commission wants more climate funding

Invisible barrier on ocean surface can reduce carbon uptake

1.5C cap on warming saves global economy trillions: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.