Energy News  
New Microfluidic Device Tackles Tough Synthesis Tasks

NIST microfluidic device for synthesizing and analyzing polymers and other complex liquids.

Gaithersburg MD (SPX) Aug 31, 2004
A new type of microfluidic device that can help industry to optimize paints, coatings for microelectronics and specialty polymers has been developed by National Institute of Standards and Technology (NIST) researchers.

The device is made of a chemically durable plastic that is resistant to many common organic solvents. It was fabricated with a rapid prototyping method also developed at the agency.

Described in the Aug. 18 issue of the Journal of the American Chemical Society, such devices can be used to make specialty polymers in small amounts, or to rapidly change polymer ingredients so that the impact of expensive additives on material behavior can be systematically analyzed.

This is becoming important as more specialty polymers use designer elements for applications in nanotechnology and biotechnology.

Devices typically measure about half the size of a credit card and are made with a technique called "frontal photopolymerization."

The NIST researchers adapted the technique to fabricating microfluidic devices. Ultraviolet light was shined through patterned "stencils" into a liquid layer of a chemical called thiolene.

Areas exposed to the light harden into a solid polymer while unexposed areas remain liquid and can be flushed away, leaving relatively deep channels capable of handling thicker fluids than current lab-on-a-chip devices.

In a separate paper, the NIST researchers provide detailed data about how varying doses of ultraviolet light affect the height of the polymer structures formed. Such data should be helpful for increasing the complexity of devices that can be fabricated with the technique.

Community
Email This Article
Comment On This Article

Related Links
NIST
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NGC Chosen To Proceed With Developing Solid-State Laser Technology For Military Applications
Redondo Beach CA (SPX) Jan 09, 2006
Northrop Grumman Corporation has been selected to develop "military-grade," solid-state laser technology that is expected to pave the way for the U.S. military to incorporate high-energy laser systems across all services, including ships, manned and unmanned aircraft, and ground vehicles.







  • NIST Unveils Chip-Scale Atomic Clock
  • Analysis: Nuclear Power Gaining Popularity
  • Vast New Energy Source Almost Here
  • Whistler Investmests To Present World's First Lithium-Powered Embassy Vehicle

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • NASA To Award Contract For Aerospace Testing
  • Sonic Boom Modification May Lead To New Era
  • Hewitt Pledges Support For Aerospace Industry
  • National Consortium Picks Aviation Technology Test Site

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement