Energy News  
New Light On Muscle Efficiency

The research was carried out on healthy human volunteers... It combined exercise testing of individuals, with laboratory analysis of muscle samples.
by Staff Writers
Odense, Denmark (SPX) Mar 28, 2006
A recent study from Scandinavia shows that the well-known differences between individuals in the efficiency of converting energy stored in food to work done by muscles are related to muscle fibre type composition and to the content of specific molecules in muscle. When muscles contract they use energy that is derived from food.

It is a two-step process. The first step occurs in mitochondria, where the energy from molecules like glucose or fats is locked away in ATP (adenosine triphosphate).

This ATP travels from the mitochondria to sites in the muscle where energy is needed, and the energy is released and used. At both of these stages there is the possibility for energy to be lost, causing a reduction in efficiency. The proportion of food energy that ends up making the muscles move is a measure of the efficiency of the system, and this is known to vary considerably between people.

The main theory is that this variation comes from differences in the efficiency with which mitochondria convert food energy to ATP. But results published in this fortnight's edition of The Journal of Physiology indicate that any differences in the efficiency of individual mitochondria cannot explain the differences in overall efficiency between people. Consequently these differences must lie in the way the ATP is used within the muscle.

The research was carried out on healthy human volunteers by a team of scientists working at the University of Southern Denmark, Odense, and the Karolinska Institute/GIH, in Stockholm, Sweden. It combined exercise testing of individuals, with laboratory analysis of muscle samples.

The results showed that work efficiency was correlated with muscle fibre type composition and with the amount of UCP3 protein � muscles with high proportions of this protein had lower efficiencies than those with low proportions.

"It's too early to say whether UCP3 causes this difference, or whether it is a marker of some other process, but further research might someday lead to training strategies that will help us improve efficiency, or identify subjects who have the potential to become more efficient over time," says lead author Martin Mogensen.

"The work is an excellent example of integrative physiology, addressing questions both at the sub-cellular and whole body levels that have implications for basic muscle energetics as well as athletic performance," says Professor Edward Coyle, of the University of Texas at Austin, in an accompanying editorial.

Community
Email This Article
Comment On This Article

Related Links
University of Southern Denmark
Karolinska Institute
Journal of Physiology
All About Human Beings and How We Got To Be Here



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


How Does The Brain Know What The Right Hand Is Doing
Sydney, Australia (SPX) Mar 24, 2006
You don't have to watch your legs and feet when you walk. Your brain knows where they are. For decades scientists have debated two options for how the brain achieves this:







  • 3-D Imaging To Enable Clean Energy Technologies
  • Coal-Based Jet Fuel Poised For Next Step
  • Russian Oil Pipeline To Avoid Pacific Wildlife Bay
  • Purdue Energy Center Symposium Touts Benefits of Hydrogen Fuel

  • Germany Still Needs Nuclear Power: Economy Minister
  • Westinghouse Has Edge In Bid For Chinese Nuclear Plants
  • Australian Pleads Guilty To Smuggling Chinese Dinosaur Eggs Into US
  • US, Russia Press For Global Nuclear Energy Network

  • The 'Oxygen Imperative'
  • NASA Studies Air Pollution Flowing Into US From Abroad
  • Carbon Balance Killed The Dinos
  • Earth's Turbulence Stirs Things Up Slower Than Expected

  • US, Japan, Europe Drive Chinese Imports Of Illegal Wood
  • Amazon 2050: Implementing Law Could Save Massive Area Of Rainforest
  • Bug Threatens Canada's Pine Forests, Climate Change Blamed
  • Amazon Rainforest Greens Up In The Dry Season

  • Changes In Agricultural Practices Could Help Slow Global warming
  • Brazilian Farming Will Doom 40 Percent Of Amazon
  • Scientists A Step Closer To Protecting World's Most Important Crop
  • New Sensor Will Help Guarantee Freshness

  • Research On The Road To Intelligent Cars
  • Volvo Promises Hybrid Truck Engines Within Three Years
  • Carbon Fiber Cars Could Put US On Highway To Efficiency
  • Ventilated Auto Seats Improve Fuel Economy, Comfort

  • Lockheed Martin Delivers F-22 Raptor To Second Operational Squadron
  • CAESAR Triumphs As New Gen Of Radar Takes Flight
  • Northrop Grumman to Provide F-16 Fleet To Greek Air Force
  • US Offers India Advanced Fighter Aircraft

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement