Energy News  
Nanowire Film Brings Cheaper, Faster Electronics A Step Closer

A chip on a plastic substrate containg nanowires - Harvard image

Boston - Nov 10, 2003
Researchers at Harvard University have demonstrated for the first time that they can easily apply a film of tiny, high-performance silicon nanowires to glass and plastic, a development that could pave the way for the next generation of cheaper, lighter and more powerful consumer electronics. The development could lead to such futuristic products as disposable computers and optical displays that can be worn in your clothes or contact lenses, they say.

Their research appears in the November issue of Nano Letters, a peer-reviewed publication of the American Chemical Society, the world's largest scientific society.

While amorphous silicon and polycrystalline silicon are considered the current state of the art material for making electronic components such as computer chips and LCDs, silicon nanowires, a recent development, are considered even better at carrying an electrical charge, the researchers say. Although a single nanowire is one thousand times smaller than the width of a human hair, it can carry information up to 100 times faster than similar components used in current consumer electronic products, they add.

Scientists have already demonstrated that these tiny wires have the ability to serve as components of highly efficient computer chips and can emit light for brilliant multicolor optical displays. But they have had difficulty until now in applying these nanowires to everyday consumer products, says Charles M. Lieber, Ph.D., head of the research project and a professor of chemistry at Harvard.

"As with conventional high-quality semi-conducting materials, the growth of high-quality nanowires requires relatively high temperature," explains Lieber. "This temperature requirement has - up until now - limited the quality of electronics on plastics, which melt at such growth temperatures."

"By using a 'bottom-up' approach pioneered by our group, which involves assembly of pre-formed nanoscale building blocks into functional devices, we can apply a film of nanowires to glass or plastics long after growth, and do so at room temperature," says Lieber.

Using a liquid solution of the silicon nanowires, the researchers have demonstrated that they can deposit the silicon onto glass or plastic surfaces � similar to applying the ink of a laser printer to a piece of paper � to make functional nanowire devices.

They also showed that nanowires applied to plastic can be bent or deformed into various shapes without hurting performance, a plus for making consumer electronics more durable.

According to Lieber, the first devices made with this new nanowire technology will probably improve on existing devices such as smart cards and LCD displays, which utilize conventional amorphous silicon and organic semiconductors that are comparatively slow and are already approaching their technological limitations.

Within the next decade, consumers could see more exotic applications of this nanotechnology, Lieber says. "One could imagine, for instance, contact lenses with displays and miniature computers on them, so that you can experience a virtual tour of a new city as you walk around wearing them on your eyes, or alternatively harness this power to create a vision system that enables someone who has impaired vision or is blind to 'see'."

The military should also find practical use for this technology, says Lieber. One problem soldiers encounter is the tremendous weight � up to 100 pounds � that they carry in personal equipment, including electronic devices. "The light weight and durability of our plastic nanowire electronics could allow for advanced displays on robust, shock-resistant plastic that can withstand significant punishment while minimizing the weight a soldier carries," he says.

Many challenges still lie ahead, such as configuring the wires for optimal performance and applying the wires over more diverse surfaces and larger areas, the researcher says.

Lieber recently helped start a company, NanoSys, Inc., that is now developing nanowire technology and other nanotechnology products.

Community
Email This Article
Comment On This Article

Related Links
Professor Charles M. Lieber Group
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Water, Water Everywhere Nano
New York (UPI) Mar 18, 2005
One of the single biggest applications of nanotechnology could be solving the global shortage of pure water, experts told UPI's Nano World.







  • Bad Mileage: 98 tons of plants per gallon
  • US And China Collaborate On Advanced Nuclear Reactor
  • Let Water Power Your Cell Phone?
  • MTI and Harris Further Develop Micro Fuel Cells for Military

  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought
  • Los Alamos Lab Working On Romanian Nuke Waste Site





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Wright Flyer Takes To The Sky In Las Vegas
  • Aurora Builds Low-speed Wind Tunnel
  • Yeager To Retire From Military Flying After October Airshow
  • Boeing Signs Technology Development Agreement With JAI For Work On Sonic Cruiser

  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems
  • Boeing To Build Space-borne Power Generator
  • New High-Purity Plutonium Sources Produced At Los Alamos

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement