Energy News  
Nanotube Cable Can Connect The Earth And The Moon

a forest of nanotubes

Moscow - Nov 18, 2003
Researchers from the Institute of Problems of Microelectronics Technology and Extra Pure Materials (Russian Academy of Sciences) have designed and tested a new device for production of a new promising material -- nanotubes. The researchers believe that it is exactly the material a transport cable can be produced of to connect the Moon and the Earth.

Back at the beginning of the last century, the idea was born to build a transport cable between the Earth and the Moon to deliver goods from our planet to the Moon. Until recently, there has been no material enabling to make this idea a reality. Polymers would not stand cosmic radiation, and the steel cable would have enormous weight. The most durable material as of today -- Spectra 1000 -- would allow to produce a cable of only 315 kilometers long, as the longer cable is simply unable to bear its own weight.

Carbonic nanotubes would very well suit the role of a structural material for such a cable. According to the researchers' estimates, a lightweight cable of required length can be produced from this material, the cable being 50 times stronger than the current most durable materials. The problem is that the researchers have not learned yet to produce high quality nanotubes in large quantities: that is either too expensive or feasible only in the laboratory environment. Therefore, this material is still pretty exotic, its price varying from $60 through $100 per gram.

The scientists from Chernogolovka have designed a device that allows to produce pretty large amounts of high quality nanotubes. The device is based on a rather simple scheme: spirit, glycerin or their mixture gets from a specially cooled chamber into the zone of graphite heater bar, where the temperature reaches 1000-2000 degrees C. That results in ultraspeed heating and substance combustion. The products precipitate on a special carbonic glass bell covering the device, or they are removed outside together with vapors and gases, thus allowing to protect the product from various unnecessary impacts.

Precipitations of such kind normally contain amorphous carbon, soot and various particles covered by a shell of carbon, as well as carbon fibre and nanotubes. However, in this particular case the researchers came across a surprise: the precipitations obtained in the device turned out to contain only nanotubes and carbon fibre. No other admixtures were found. It means that a laborious procedure is not required for rectification from unnecessary compoments. The fibres are 30-150 nanometers thick, and nanotubes are 20-50 nanometers thick, their length being several micrometers.

The growth of nanotubes can be accelerated with the help of catalysts -- iron, nickel, cobalt and gold. If the surface where nanotubes are to be precipitated is covered with a thin film of such catalyst in the form of some pattern, then nanotubes will precipitate only upon the pattern, the other parts remaining clean.

In principle, such devices may lay the foundation for industrial production of nanotubes. Maybe, a nanotube cable will soon connect the Moon and the Earth.

Source: Institute of Problems of Microelectronics Technology and Extra Pure Materials

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Water, Water Everywhere Nano
New York (UPI) Mar 18, 2005
One of the single biggest applications of nanotechnology could be solving the global shortage of pure water, experts told UPI's Nano World.







  • The Hydrogen Programme Launched In Russia
  • Reversible Computers More Energy Efficient, Faster
  • DoE Funds Bio Processes To Sequester Carbon
  • Bad Mileage: 98 tons of plants per gallon

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Wright Flyer Takes To The Sky In Las Vegas
  • Aurora Builds Low-speed Wind Tunnel
  • Yeager To Retire From Military Flying After October Airshow
  • Boeing Signs Technology Development Agreement With JAI For Work On Sonic Cruiser

  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems
  • Boeing To Build Space-borne Power Generator
  • New High-Purity Plutonium Sources Produced At Los Alamos

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement