Energy News  
Nanotechnology Hurdle Not So Worrisome, Thanks To Chemistry Discovery

file illustration of gallium clusters

Bloomington - Dec 03, 2003
According to the classic rules of physics, substances melt at a lower temperature when their sizes decrease. But scientists at Indiana University Bloomington have found that at least one substance, gallium, breaks the rules, remaining stable as a solid at temperatures as much as 400 degrees Fahrenheit above the element's normal melting point. Their report will be published in an upcoming issue of Physical Review Letters.

The discovery gives hope to some nanotechnologists and "nanocomputer" engineers, who have been worried that components will behave unpredictably at smaller sizes, possibly even melting at room temperature.

"We expect this finding will interest nanotechnologists and the manufacturers of tomorrow's computers," said chemist Martin Jarrold, who led the National Science Foundation-funded research. "But we also believe chemists will find this phenomenon exciting -- it totally confounds their expectations."

Jarrold and his collaborators showed that clusters of a few gallium atoms remain solid rather than becoming liquid near the element's normal melting point, 86 F. Just as surprisingly, the researchers showed that the tiny gallium clusters are actually more stable as solids when composed of 17, 39 and 40 atoms than a gallium slab containing trillions of atoms.

Jarrold decided to test the stability of a substance that is especially sensitive to temperature changes near room temperature. Fitting that description is the metallic element gallium, which has an unusually low melting point. Placing a warm fingertip on a cube of gallium will cause it to melt.

The researchers constructed a special device to shoot tiny gallium particles containing just a few atoms into gaseous helium. Collisions with the helium atoms broke the gallium clusters into small pieces. Two mass spectrometers measured the size of the intact and broken gallium clusters. By measuring the energy needed to break the clusters into pieces, the researchers were able to determine whether the clusters were in liquid or solid states.

Jarrold and his team observed that gallium clusters with 39 and 40 atoms melt at around 531 F. Gallium clusters containing 17 atoms didn't melt at all across the minus 297 to 837 F temperature range the scientists surveyed. Why the gallium clusters retained such stability at high temperature is a mystery.

Not all elements or compounds are likely to behave as gallium does. Using the same method, Jarrold previously learned that particles of sodium chloride -- table salt -- obey the classical rules of physics. Small salt particles with just a few atoms melt at low temperatures.

Despite its potential implications for industry, Jarrold said his discovery and his general interest in atomic and molecular clusters, which began at Bell Laboratories, are mainly academic.

"I just think it's fascinating to ask how small you can make something before its properties change," Jarrold said.

IUB chemists Gary Breaux and Robert Benirschke, Nagoya University (Japan) chemist Toshiki Sugai, and Intel Corporation scientist Brian Kinnear also contributed to the report. All of the report's contributing authors were at IUB when the study was completed.

Community
Email This Article
Comment On This Article

Related Links
Indiana University
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Water, Water Everywhere Nano
New York (UPI) Mar 18, 2005
One of the single biggest applications of nanotechnology could be solving the global shortage of pure water, experts told UPI's Nano World.







  • U.Texas At Austin Flywheel Spins To A Milestone Speed Record
  • Power, Water Shortages Feared To Continue
  • American Superconductor To Help Power Electro-Thermal Chemical Gun Project
  • Prospects Brighten For Future Superconductor Power Cables

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • National Consortium Picks Aviation Technology Test Site
  • Wright Flyer Takes To The Sky In Las Vegas
  • Aurora Builds Low-speed Wind Tunnel
  • Yeager To Retire From Military Flying After October Airshow

  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems
  • Boeing To Build Space-borne Power Generator
  • New High-Purity Plutonium Sources Produced At Los Alamos

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement