Energy News  
Nanoparticles Set To Seek Out And Destroy Bad Cells

Illustration of gold nanoparticles attaching themselves to cancer cells.

New York (UPI) Dec 06, 2005
A new method to develop collections of nanoparticles that each seek out different cell types could help scientists to better spot tumors before they grow or to deliver medicines to precise targets, experts told UPI's Nano World.

Interventional radiologist Ralph Weissleder at Harvard Medical School and his colleagues are developing nanoparticles that can emit either magnetic or optical signals. The hope is to coat these nanoparticles with compounds that help guide their way toward specific cells. Such coated nanoparticles could then single out tumor cells to help physicians detect where they are in the body, even if they are few in number and otherwise unnoticeable.

"The earlier you can detect cancers, the better your chances are for survival," said researcher Kimberly Kelly, a biochemist at Harvard Medical School in Charlestown, Mass.

Scientists are developing nanoparticles that carry medicines as well, Kelly said. Aiming such nanoparticles toward specific cells helps prevent side effects that arise from inadvertently drugging the wrong cells.

Weissleder and Kelly and their colleagues developed a new method to both rapidly coat nanoparticles with any of a number of small molecules and rapidly screen the resulting nanoparticles against various cell types to see which coatings work best. "Small molecules are easier to synthesize and cheaper than, say, peptides," Kelly said, which scientists are experimenting with also as nanoparticle coatings.

The researchers started with fluorescent magnetic nanoparticles and used robots to link 146 different kinds of small molecules demonstrating a variety of molecular binding affinities to these nanoparticles, for roughly 60 small molecules per 38-nanometer-wide particle. The scientists next tested these nanoparticles against five different kinds of human cells, including pancreatic cancer cells and cells known as macrophages, which engulf germs and debris.

The researchers found nanoparticles that specifically went after pancreatic cancer cells. They also found nanoparticles that far preferred activated macrophages -- those that avidly hunt down targets -- to resting macrophages. Specific kinds of activated macrophages are linked to autoimmune diseases and the atherosclerotic plaques associated with artery clogging, Kelly explained.

"At the very early stages, it is very difficult to detect atherosclerotic plaques when they are developing," said chemist and magnetic nanoparticle researcher J. Manuel Perez at the University of Central Florida in Orlando. "So this could be important for that."

Depending on which coatings they used, the scientists also found they could vary how many nanoparticles the cells took up, from roughly 11,000 per cell to 5.5 million, which could prove useful if scientists want to precisely meter out how many drug-loaded nanoparticles reach targeted cells. The researchers presented their findings in the November issue of the British scientific journal Nature Biotechnology.

"The high-throughput assay they demonstrate is a very important path of research," Perez said. "The more diversity you have with these nanoparticle surfaces, the more chance that you have of having a hit against a specific receptor over-expressed in disease."

The researchers have expanded their chemical library to include another 96 kinds of small molecules and hope to soon branch out more "to make our technique more effective," Kelly said.

Charles Choi covers research and technology for UPI.

Source: United Press International

Community
Email This Article
Comment On This Article

Related Links
Harvard Medical School
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Nano Interfaces With Cells
New York (UPI) Jan 04, 2006
Coatings made with titanium and peppered with pores only nanometers or billionths of a meter wide could help interface living cells with electronics for prosthetics and other advanced devices, experts told UPI's Nano World.







  • Is The Flow Of Oil Assured
  • Fuel Cells Could Save Air Force Thousands
  • Poison + Water = Hydrogen. New Microbial Genome Shows How
  • Norway And Britain To Cooperate On Underwater CO2 Storage

  • Chinese PM Eyes Nuclear Future In France
  • India Joins International Fusion Project In France
  • Boost To India-US Nuclear Deal
  • British PM Announces Nuclear-Focused Energy Review

  • What Is A Cloud
  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source

  • ESA Presents Space Solution To Montreal Forest Conference
  • Modern Forests Suffer From Century Old Logging Legacy
  • Tree Species Regulate Themselves In Ecological Communities
  • Tropical Dry Forests Receive International Recognition

  • Fishing Inland Waters Putting Pressure On Fish Stocks
  • Ancient Canals Reveal Underpinnings Of Early Andean Civilization
  • Oil Mist Reduces Airborne Hazards In Concentrated Swine Feeding Operation
  • Swiss Approve Five-Year Ban On GM In Farming

  • GM Hires Russian Nuclear Scientists To Develop New Auto Technology
  • Japan Creates The World's Fastest Electric Sedan
  • Motorists To Pay 'Congestion' Charge Over Broader Swath Of London
  • Solar Cars Driving Towards A Hydrogen Future

  • IAI To Supply Virtual Mission Training System For T6B Aircraft
  • China Negotiating Major Airbus Purchase Source
  • AirAsia To Dramatically Expand On Wings Of New Airbus Planes
  • Geneva Aerospace Extends Its Flight Tech To Raspet's Ultra-Light Glider

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement