Energy News  
Nano World: Nano Radios For Microchips

A simulation made with NIST micromagnetic software shows the interaction of "spin waves" emitted by two nano-oscillators that generate microwave signals. The ability of these tiny spintronic devices to spontaneously synchronize their emissions may lead to smaller, cheaper wireless communications components. Credit: NIST.

New York (UPI) Sep 15, 2005
Radios the size of bacteria employing nano-magnets could help microchips wirelessly communicate with one another, experts told UPI's Nano World.

"Wireless connections between microchips could offer possible benefits in terms of reduced system complexity and easier and less costly manufacturing requirements," said researcher Fred Mancoff, a magnetoelectronics-device scientist at chipmaker Freescale Semiconductor in Chandler, Ariz.

"One known problem that is out there is the speed bottleneck due to wired interconnects in semiconductor electronics. These devices that we are studying could be a valid solution for nano-sized transmitters and receivers for wireless communication between chips in a computer or even within a chip itself," said researcher Shehzu Kaka, a physicist formerly at the National Institute of Standards and Technology in Boulder, Colo., and now at Seagate Technology in Scotts Valley, Calif.

"Chipmakers like Intel are pursuing wireless optical communications between chips, and our technology could be an inexpensive and perhaps more effective alternative."

Two research teams, one led by NIST, the other at Freescale, experimented with magnets each 50 to 80 nanometers wide. Applying electrical current to such magnets causes their poles to rotate. These oscillations then can be employed for radio signals.

The scientists wanted to synchronize the nano-magnet oscillations, making sure they all swung together in step. When the oscillations are synchronized, their combined output can be much greater than the sum of their parts.

Both research teams independently found when the magnets sit about 200 nanometers to 500 nanometers apart, they synchronize naturally, much as two pendulums will come into synchrony if they both are attached to the same support.

The result: The synchronized magnets generate a single signal with twice the intensity of an unsynchronized pair of magnets. The scientists report their findings in the Sept. 15 issue of the journal Nature.

"These devices are fully compatible with standard semiconductor manufacturing technology," Mancoff said.

In principle, this synchronization and the resulting amplification in output power should work not just with two nano-magnets, but also with series of them. Arrays of 10 nano-magnets could produce and receive microwatt signals, enough to serve in transmitters and receivers in cell phones, radar and microchips.

"Larger arrays, and higher powers are the clear next step for applications," said researcher Matthew Pufall, a NIST physicist. However, "from a basic research point of view, we need to understand the nature of the interaction between oscillators."

"A more practical issue involves the engineering of such a device into a working chip, which will be anything but trivial. But then, the researchers are from Freescale and NIST. They definitely have the resources and the know-how," said physicist Raj Mohanty of Boston University.

Charles Choi covers research and technology for UPI

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Study Shows Nanoparticles Could Damage Plant Life
Newark NJ (SPX) Nov 23, 2005
A nanoparticle commonly used in industry could have a damaging effect on plant life according to a report by an environmental scientist at New Jersey Institute of Technology (NJIT).







  • ORNL, Princeton Partners In Five-Year Fusion Project
  • Oil Prices Drop After OPEC Lowers Demand For Crude
  • Helping Out A High-Temperature Superconductor
  • Making Plant Cells Work Like Miniature Factories

  • Scorpene Deal Will Ensure Nuke Supply
  • Russia To Build Nuke Waste Facility
  • Death, Environmental Toll From Chernobyl Less Than Feared: Report
  • China Won't Sign On To PSI

  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source



  • Analysis: N.Korea No Longer Wants Food Aid?
  • Novel Compounds Show Promise As Safer, More Potent Insecticides
  • Agriculture Reviving In Aceh After Tsunami: Scientists
  • Analysis: EU Farm Aid Under Spotlight

  • German Car Makers Scramble To Jump On Hybrid Engine Bandwagon
  • Could Katrina Kill The SUV?
  • SUV Drivers Beware: Paris Can Be A Deflating Experience
  • Mitsubishi, TEPCO To Team Up On Electric Car: Report

  • Sizing Up The Future Of Air Travel
  • Lockheed Martin Produces World's Only 5th Generation Fighters
  • Airport Set To Reopen In Small Step Towards Recovery
  • Lockheed Martin F-35 Looking Toward Production, Operational Capability

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement