Energy News  
NIST Demonstrates Better Memory With Quantum Computer Bits

Quantum memory must be able to store "superpositions," an unusual property of quantum physics in which a quantum bit (qubit) such as an ion represents both 0 and 1 at the same time.

Gaithersburg MD (SPX) Aug 11, 2005
Physicists at the National Institute of Standards and Technology (NIST) have used charged atoms (ions) to demonstrate a quantum physics version of computer memory lasting longer than 10 seconds--more than 100,000 times longer than in previous experiments on the same ions.

The advance improves prospects for making practical, reliable quantum computers (which make use of the properties of quantum systems rather than transistors for performing calculations or storing information).

Quantum computers, if they can be built, could break today's best encryption systems, accelerate database searching, develop novel products such as fraud-proof digital signatures or simulate complex biological systems to help design new drugs.

As described in the Aug. 5, 2005, issue of Physical Review Letters, NIST scientists stored information in single beryllium ions for longer periods of time by using a different pair of the ions' internal energy levels to represent 1 and 0 than was used in the group's previous quantum computing experiments.

This new set of quantum states is unaffected by slight variations in magnetic fields, which previously caused memory losses in ions stored in electromagnetic traps.

Quantum memory must be able to store "superpositions," an unusual property of quantum physics in which a quantum bit (qubit) such as an ion represents both 0 and 1 at the same time.

The new approach enables qubits to maintain superpositions over 1 million times longer than might be needed to carry out the information processing steps in a future quantum computer.

The advance is, therefore, an important step toward the goal of designing a "fault tolerant" quantum computer because it significantly reduces the computing resources needed to correct memory errors.

In related experiments also described in the paper, NIST scientists demonstrated that pairs of "entangled" ions can retain their quantum states for up to about 7 seconds.

Entanglement is another unusual property of quantum physics that correlates the behavior of physically separated ions. Superposition and entanglement are the two key properties expected to give quantum computers great power.

C. Langer, R. Ozeri, J.D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R.B. Blakestad, J. Britton, D.B. Hume, W.M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P.O. Schmidt and D. J. Wineland. Long-lived qubit memory using atomic ions. Physical Review Letters, 95, 060502 (2005).

Community
Email This Article
Comment On This Article

Related Links
NIST's quantum computing research
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Purdue Simulation To Help Merge Molecules With Silicon Electronics
West Lafayette IN (SPX) Aug 17, 2005
Engineers at Purdue University have created a nanotech simulation tool that shows how current flows between silicon atoms and individual molecules to help researchers design "molecular electronic" devices for future computers and advanced sensors.







  • Fastnet Yacht Runs Faster With Space Technology
  • UPI Market Update: Global Oil Demand Unbalanced
  • Solar Energy Project At The Weizmann Institute Promises To Advance The Use Of Hydrogen Fuel
  • Iraqi Oil: A Slow Unsteady Recovery

  • U.K. Decommissioning More Expensive Than Expected
  • The Ecological Effects Of The Chernobyl Disaster
  • Nuclear Contamination Found In Four States
  • Ancient Egypt Helps Nuclear Scientists

  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source



  • New Bacteria Screening Technique May Aid Food Safety
  • Farmer Becomes First Chinese Individual To Breed Seeds In Space
  • A Field Of Beams
  • Humans Trading Short-Term Food For Long-Term Environmental Losses

  • The Driving Doctor: Take Time To Observe
  • Networking: 'Smart Highways' Emerging
  • Eco-Friendly Motor Rally Sets Off From Kyoto To Celebrate Environment

  • Air France Plane Hit By Lightning Before Crash: Passengers
  • Rolls-Royce Shares Rocket On Strong Profits, Dividend News
  • Imaging Technique Reduces Structural Component Failures
  • Rockwell Collins Applies New NASA Software Verification Technology

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement