Energy News  
NASA Shows Future Space Telescopes Could Detect Earth Twin

Three simulated planets -- one as bright as Jupiter, one half as bright as Jupiter and one as faint as Earth -- stand out plainly in this image created from a sequence of 480 images captured by the High Contrast Imaging Testbed at JPL. A roll-subtraction technique, borrowed from space astronomy, was used to distinguish planets from background light. The asterisk marks the location of the system's simulated star. Image credit: NASA/JPL-Caltech
by Staff Writers
Pasadena CA (JPL) Apr 12, 2007
For the first time ever, NASA researchers have successfully demonstrated in the laboratory that a space telescope rigged with special masks and mirrors could snap a photo of an Earth-like planet orbiting a nearby star. This accomplishment marks a dramatic step forward for missions like the proposed Terrestrial Planet Finder, designed to hunt for an Earth twin that might harbor life.

Trying to image an exoplanet - a planet orbiting a star other than the sun - is a daunting task, because its relatively dim glow is easily overpowered by the intense glare of its much bigger, brighter parent star. The challenge has been compared to looking for a firefly next to a searchlight.

Now, two researchers at NASA's Jet Propulsion Laboratory in Pasadena, Calif., have shown that a fairly simple coronagraph - an instrument used to "mask" a star's glare - paired with an adjustable mirror, could enable a space telescope to image a distant planet 10 billion times fainter than its central star.

"Our experiment demonstrates the suppression of glare extremely close to a star, clearing a field dark enough to allow us to see an Earth twin. This is at least a thousand times better than anything demonstrated previously," said John Trauger, lead author of a paper appearing in the April 12 issue of Nature. This paper describes the system, called the High Contrast Imaging Testbed, and how the technique could be used with a telescope in space to see exoplanets. The lab experiment used a laser as a simulated star, with fainter copies of the star serving as "planets."

To date, scientists have used various techniques to detect more than 200 exoplanets. Most of these exoplanets are from five to 4,000 times more massive than Earth, and are either too hot, too cold or too much of a giant gas ball to be considered likely habitats for life. So far, no one has managed to capture an image of an exoplanetary system that resembles our own solar system. Scientists are eager to take a closer look at nearby systems, to hunt for and then characterize any Earth-like planets - those with the right size, orbit and other traits considered friendly for life.

In the lab demonstration, the High Contrast and Imaging Testbed overcame two significant hurdles that all telescopes face when trying to image exoplanets - diffracted and scattered light.

When starlight hits the edge of a telescope's primary mirror, it becomes slightly disturbed, producing a pattern of rings or spikes surrounding the major source of light in the focused image. This diffracted light can completely obscure any planets in the field of view.

To address this problem, Trauger and his colleagues at JPL fashioned a pair of masks for their system. The first, which resembles a blurry barcode, directly blocks most of the starlight, while the second clears away the diffracted rings and spikes. The combination creates enough darkness to allow the light of any planets to shine through.

"Mathematically, and sort of magically, this coronagraph blocks both the central star and its rings," said Wesley Traub of JPL, co-author of the new paper and Terrestrial Planet Finder project scientist.

Scattered light presents the additional hurdle. Minor ripples on a telescope's mirror produce "speckles" - faint copies of a star, shifted to the side, which can also hide planets. In the High Contrast Imaging Testbed, a deformable mirror the size of a large coin limits scattered light. With a surface that can be altered ever so slightly by computer-controlled actuators, this mirror compensates for the effects of minor imperfections in the telescope and instrument.

"This result is important because it points the way to building a space telescope with the ability to detect and characterize Earth-like planets around nearby stars," Traub said.

For their next steps, Trauger and Traub plan to improve the suppression of speckles by a factor of 10, and extend the method to accommodate many wavelengths of light simultaneously.

Community
Email This Article
Comment On This Article

Related Links
Terrestrial Planet Finder
Beyond Sol
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Water Identified In Extrasolar Planet Atmosphere
Flagstaff AZ (SPX) Apr 11, 2007
For the first time, water has been identified in the atmosphere of an extrasolar planet. Through a combination of previously published Hubble Space Telescope measurements and new theoretical models, Lowell Observatory astronomer Travis Barman has found strong evidence for water absorption in the atmosphere of transiting planet HD209458b.







  • Energy Center Symposium To Pave The Road To A Hydrogen Economy
  • China To Rely More On Cleaner Energy Like Natural Gas By 2010
  • ConocoPhillips Establishes Biofuels Research Program At Iowa State
  • Tech Company Involved In Breakthrough Research

  • Mitsubishi Corp Buys Uranium Rights In Canada
  • Japanese Nuclear Industry Vows Safety
  • Egypt And Russia Drafting Nuclear Cooperation Agreements
  • Russia May Invite Neighbors To Join NPP Project In Far East

  • University Of Colorado Instruments To Launch On NASA Cloud Mission
  • Powerful New Tool To Track Atmospheric Carbon Dioxide By Source
  • Sun-Warmed Air Pollution Flows East From Asia
  • Disaster Zone Declared As Thai Haze Reaches Dangerous Levels

  • Trees To Offset The Carbon Footprint
  • Light Shed On Long-Term Effects Of Logging After Wildfire
  • Invasive Grass May Impede Forest Regeneration
  • Slowly But Surely Burned Forest Lands Regenerate Naturally

  • Farmland Across China At Risk From Pollution
  • Anthropologist Finds Earliest Evidence Of Maize Farming In Mexico
  • Boost In Rice Production To Avoid Food Shortages In Indonesia
  • Wine Industry Faces Major Challenge From Global Warming

  • Driverless Car Goes On Show In London
  • Made In USA Losing Cachet
  • Technique Creates Metal Memory And Could Lead To Vanishing Dents
  • Toyota Anticipates Sharp Increase In Its Hybrid Sales

  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • NASA Seeks New Research Proposals
  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement