Energy News  
Multinational Team of Scientists Finds Early Life in Volcanic Lava

a rock eater - SCRIPPS image

San Diego - Apr 26, 2004
Scientists from the United States, Norway, Canada, and South Africa have identified what is believed to be evidence of one of Earth's earliest forms of life, a finding that could factor heavily into discussions of the origins of life.

The team, which includes a scientist from Scripps Institution of Oceanography at the University of California, San Diego, found microscopic life colonized in ancient volcanic lava dating nearly 3.5 billion years old, during a time known as the Archean.

The findings are reported in the April 23 issue of the journal Science. The team includes Harald Furnes and Neil Banerjee of the University of Bergen, Norway; Karlis Muehlenbachs of the University of Alberta, Canada; Hubert Staudigel of Scripps Institution; and Maarten de Wit of the University of Cape Town, South Africa.

In 2001, Staudigel and his colleagues documented how microscopic organisms, smaller than the width of a human hair, are able to eat their way into volcanic rock to form long, worm-like tubes.

The new study, which describes a similar finding in the Barberton Greenstone Belt, a location several hundred miles east of Johannesburg, South Africa, near Swaziland, proves that microbial processes that can be seen today also occurred during the earliest stages of the planet's history at the roots of life's origins.

The Barberton Greenstone Belt was formed in an underwater setting in the planet's oceanic crust but is now uplifted and accessible to land-based field work. Until the team's expedition last June, this area had not been extensively explored for signs of early life.

"Our evidence is amongst the oldest evidence for life found so far," said Staudigel, a research geophysicist at the Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics at Scripps.

"This area within the oceanic crust is a favorable place for the origin of life. It offers relatively easy access to seawater and volcanic environments such as deep-sea hydrothermal systems-including a wide range of catalysts that are required in the origin of life."

Staudigel also argues that the region's previous geographic position in a submarine environment below the ocean floor may have provided protection from the life-stunting effects of meteorites that bombarded Earth's surface billions of years ago.

"This finding may allow us to cross-reference the visual clues of these microbial fossils with their chemical fingerprints," said Staudigel. "They may help us understand biological and chemical processes that occurred 3.5 billion years ago, which is only one billion years after the accretion of Earth from the solar nebula."

The scientists identified the microbes in an area of Barberton with ample volcanic eruptions called "pillow lavas." These are formed when undersea volcanoes erupt and spew lava, which cools quickly to form tube-like structures. Over time these tubes harden and, when dissected by erosion, form pillow-like formations.

"When the planet was three-and-a-half billion years old there were no plants or animals to eat," said Staudigel. "So to make a living these microbes adapted to eating volcanic rock. That's all there was."

The scientists now plan to carefully analyze the microbes with sensitive instruments to characterize their ancient activities within the pillow lava.

The study was funded by the Norwegian Research Council, the National Sciences and Engineering Research Council of Canada, the U.S. National Science Foundation, the Agouron Institute and the National Research Foundation of South Africa.

Community
Email This Article
Comment On This Article

Related Links
Scripps Institution of Oceanography
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Explore The Early Earth at TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Discovery Offers Clues To Origin Of Life
Edmonton - Apr 26, 2004
A new discovery of microbial activity in 3.5 billion-year-old volcanic rock and one of earth's earliest signs of geological existence sheds new light on the antiquity of life, says University of Alberta researchers who are part of a team that made the groundbreaking finding.







  • An 'Off The Wall' Idea
  • Renewable Energy Promotes US Job Growth Better Than Fossil Fuels
  • Hybrid Vehicles To Race Ahead Of Battery And Fuel Cell Versions
  • Department of Energy To Revisit Cold Fusion

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Sonic Boom Modification May Lead To New Era
  • Hewitt Pledges Support For Aerospace Industry
  • National Consortium Picks Aviation Technology Test Site
  • Wright Flyer Takes To The Sky In Las Vegas

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement